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Abstract

Transformation optics has shown the ability to cloak an object from incident

electromagnetic radiation is theoretically possible. However, the constitutive param-

eters dictated by the theory are inhomogeneous, anisotropic, and, in some instances,

singular at various locations. In order for a cloak to be practically realized, sim-

plified parameter sets are required. However, the simplified parameters result in a

degradation in the cloaking function.

Constitutive parameters for simplified two-dimensional cylindrical cloaks have

been developed with two specific material property constraints. It was initially be-

lieved satisfying these two constraints would result in the simplified cylindrical cloaks

satisfying the same wave equation as an ideal cloak. Because of this error, the sim-

plified two-dimensional cylindrical cloaks were not perfect. The error in the initial

derivation of the original simplified parameter sets was noted in the published litera-

ture. However, no analysis was done to determine all material parameter constraints

to enable a perfect two-dimensional cylindrical cloak. This research developed a

third constraint on the material parameters. It was shown as the material param-

eters better satisfy this new equation, a two-dimensional cylindrical cloak’s hidden

region is better shielded from incident radiation. Additionally, a novel way to derive

simplified material parameters for two-dimensional cylindrical cloaks was developed.

A Taylor series expansion dictated by the new constraint equation led to simplified

cloaks with significantly improved scattering width performances when compared to

previous published results.

During the course of this research, it was noted all cloak simulations are per-

formed using finite element method (FEM) based numerical methods. While accu-

rate, FEM methods can be computationally intensive and time consuming. A Green’s

function was used to accurately calculate scattering widths from a two-dimensional
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cylindrical cloak with a perfect electrically conducting inner shell. Significant time

improvements were achieved using the Green’s function compared to an FEM solution

particularly as the computational domain size is increased.

Finally, cloaks are physically realized using metamaterials. Design of metama-

terials has typically been done empirically. Shifts in S-parameter measurements and

the resulting extracted constitutive parameters are used to determine the impact to

resonant regions due to various geometries. A new way to design and possibly opti-

mize unit cell metamaterials was investigated using an eigendecomposition method

to identify unit cell resonances. Different structures were shown to have different

resonances, and control of the resonant locations can lead to optimum designs.
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Electromagnetic Field Control

and

Optimization Using Metamaterials

I. Introduction

Radar cross section (RCS) reduction has been a goal of scientists and engineers

since the first major uses of radar in World War II. A wide body of knowledge exists on

passive techniques used to control scattering due to incident electromagnetic energy.

These techniques can be divided into two main sub-categories: shaping and radar ab-

sorbing materials (RAM). The effectiveness of both categories are typically dependent

on the frequency, incident angle, and polarization of the illuminating energy.

The goal of shaping is to scatter the incident energy from the target such that the

amount of energy returned toward the radar is minimized. This type of RCS control

has proven to be very effective for monostatic radars where the transmit and receive

antennas are collocated. For a threat aircraft, the attack profile can be controlled

such that a small range of target angles will be presented to the radar. Shaping can

be used to reduce the RCS at these angles and increase the aircraft’s stealthiness.

However, a rule of thumb for shaping is a reduction in the RCS at one aspect angle is

always accompanied by an increase at another [49]. Consider a two-dimensional RCS

(i.e. echowidth). If all 360◦ of measurement angles are equally important, shaping will

reduce the echowidth at one angle while increasing it at another angle (or several other

angles). In some instances, this is acceptable. As an example, the technique of lobe

width control allows the RCS to balloon in certain sectors where significant scattered

energy does not impact the desired result. In other instances, lobe width control is

an unacceptable way to control RCS. It is easy to see a low-RCS threat designed to

act against a monostatic radar will have a significantly reduced capability against a
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bistatic radar, whether the bistatic radar is an integrated network of transmitters and

receivers or if the radar is simply making use of transmitters of opportunity.

The goal of RAM is to convert the incident electromagnetic energy into heat,

thereby reducing the amount of scattered electromagnetic energy capable of being

detected by the radar sensors. Note RAM cannot reduce the forward scatter of an

object, but it is very effective in controlling the back scatter. This can be done with

either an electric or magnetic loss tangent in the RAM material. Narrow band RAM

coatings, such as the Salisbury screen and Dallenbach layer, have been used since

the 1950’s [94]. Modern radar systems span a wide range across the electromagnetic

spectrum, with most operating between 220 MHz - 35 GHz; however, over-the-horizon

and millimeter wave radars operate outside this range [87]. Many radars also have

a wide operational bandwidth. Therefore, wide band RAM is very desirable. The

first broadband absorber was a Jaumann absorber, which can be thought of as a

multilayered Salisbury screen [94]. Another type of broadband RAM are the carbon-

loaded foam absorbers used in anechoic chambers to limit the scattered energy from

surfaces other than the device-under-test (DUT) [48]. Typical RAM employed on

modern aircraft is some type of iron ball paint. The paint contains tiny spheres

coated with carbonyl iron or ferrite. Incident electromagnetic energy interacts with

these spheres, resulting in the electromagnetic energy being converted to heat [3].

There are significant implications when using RAM. First, most are toxic to

some degree. During the first Gulf War, maintenance crews noted a large number of

dead bats in the hangars where the F-117 was kept. Their deaths were attributed to

long exposure to the RAM coupled with a lack of ventilation [1]. Additionally, RAM

coatings require precise application methods, as the coating thickness and smoothness

must be uniform across the surface of the substrate. The application process typi-

cally involves robotic sprayers that can accurately control the coating thickness [3].

Furthermore, the applied coatings require strict constitutive parameter tolerances as

well as uniformity in order to achieve the desired result. Therefore, costs increase

drastically when working with RAM. Also, any type of RAM coating increases an
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object’s weight. For aircraft, weight increases can have significant impact on perfor-

mance. RAM is not simply a covering that can be easily applied to an aircraft or

other body to reduce its RCS. Rather, working with RAM, from its manufacture to

application, is a technically detailed, costly process.

When used together, shaping and RAM make effective RCS reduction tools, but

the limits of their effectiveness are being approached in the field of RCS measurements.

These limits are particularly noticeable when the DUT has a low RCS. The low RCS

makes it difficult to differentiate radar returns resulting from the DUT and other

objects inherent in the measurement system. This limitation is discussed in the

following section.

1.1 Long Term Problem Statement

RCS measurements are obtained using test ranges. Static test ranges can be

either indoor or outdoor, with each having its positives and negatives. For physically

large targets, an outdoor test range is typically required. The ideal outdoor test

range has minimal background signals and little to no secondary scattering sources.

This allows the measured RCS to be as close to the actual RCS as possible. To

avoid ground bounce interaction, the target is mounted a considerable distance off

the ground. A metal pylon is often used as the primary support structure. Other

support systems exist, such as foam columns and string support systems [48], but

neither is currently capable of supporting heavy or awkwardly shaped targets. The

basic measurement setup is shown in Figure 1.1. The top picture is an aerial view of

an outdoor range in New Mexico. A bank of antennas is located at one end of the

range (lower right in Figure 1.1). The different antennas allow for different frequency

bands to be measured. The target is located opposite the antenna bank (lower left

in Figure 1.1). Note the absence of any significant structures surrounding the pylon

and radar.

The target can be rotated and inclined to allow measurements of all desired

azimuth and elevation angles. The pylon itself does not rotate, but, like all objects,

3



Figure 1.1: RCS Measurement Setup [4–6]

it scatters incident energy. Pylons have been shaped to enable them to support

significant weight while minimizing RCS in the backscattering direction. Additionally,

RAM has also been incorporated into the pylons’ designs to help reduce the scattered

energy.

The collected data is processed to calculate the DUT’s RCS. The calculation

used to determine the RCS is a vector background subtraction defined as [24]

σ =

∣∣∣∣∣
⇀

E
s

T −
⇀

E
s

TB
⇀

E
s

C −
⇀

E
s

CB

∣∣∣∣∣

2

σCAL, (1.1)

where σ is the measured RCS,
⇀

E
s

T is the scattered field when the target is mounted

on the pylon,
⇀

E
s

TB is the scattered field when the target is not on the pylon,
⇀

E
s

C is

the scattered field from a calibration target,
⇀

E
s

CB is the scattered field when the cal-

ibration target is removed, and σCAL is the calculated RCS of the calibration target.

Additionally, the calibration target is typically a simple shape with an easily theo-

retically determined RCS. This calibration is done to identify and remove sources of
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scattered energy other than the DUT as well as compensate for systematic errors due

to the non-ideal radar. However, the calibration, while good, is limited. Equation 1.1

cannot be used to calibrate scattered energy resulting from a target-pylon interaction.

This is when the scattered energy from the target (pylon) strikes the pylon (target)

and results in a signal measured by the radar. Such a return is only present when

the target is mounted on the pylon. Thus, it cannot be corrected via a calibration.

Typically, fields from this type of interaction are small compared to the target’s scat-

tered field. However, for low RCS targets, the interaction can be on the same order of

magnitude. Therefore, a way to reduce the bistatic RCS of the pylon is required. A

bistatic reduction is necessary because the energy scattered from the target can strike

the pylon from a large number of angles. RAM and shaping have been successfully

used, but as the DUT RCS continues to decrease, an alternate way to control the

component of the scattered field resulting from a target-pylon interaction is required.

1.2 Transformation Optics

Transformation optics is a relatively new field that provides the fundamental

theory enabling precise control of electromagnetic waves. Control of electromagnetic

waves is certainly not a new technology. Waveguides and fiber optics have been doing

just that for over a century. A key distinction is waveguides and fiber optics are

guiding structures operating such that their boundaries confine the fields within a

desired space. Transformation optics uses a smooth variation in the media consti-

tutive parameters to steer the fields in a desired manner. The precision with which

transformation optics allows one to control an electromagnetic field is unprecedented

and could lend itself to the target-pylon scattering reduction problem.

Transformation optics works because geometric rays propagate along a given

trajectory and obey Fermat’s principle. Fermat’s principle states light waves of a given

frequency propagate along the path between two points which takes the least time [64].

For an isotropic, homogeneous medium, the result is that light rays propagate in a

straight line. However, when the medium is anisotropic and inhomogeneous, the path
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which the rays travel can be quite complex. Thus, by controlling the constitutive

material parameters (
↔
µr,

↔
εr), electromagnetic energy can be guided in any way one

sees fit. But how does one exactly design a desired electromagnetic response in a

system? Specifically, other than using trial and error, how can one design the required

constitutive parameters of a medium to result in a desired electromagnetic effect?

Theoretically, it is actually quite simple. First, one develops a transformed space

in which electromagnetic waves propagate in a desired manner. A generic transformed

space is shown in Figure 1.2. This new space is then related to Cartesian coordinates

Figure 1.2: Generic transformation space [93]

using a coordinate transformation. Ward and Pendry showed Maxwell’s equations are

invariant under any type of coordinate transform i.e. the equations are the same in all

coordinate systems with only the permittivity and permeability changing values [97].

Thus, in the transformed space, Maxwell’s equations correctly describe the behavior

of the electromagnetic waves. One may use the invariance of Maxwell’s equations to

derive a material with constitutive parameters defined using a permittivity and per-

meability tensor. When this material is placed in Cartesian coordinates, the resulting

field behavior accurately mimics the field behavior in the transformed space (reference

Appendix A). The material defined by the permittivity and permeability tensors is

what creates the desired electromagnetic effects. The permittivity and permeability

tensors are easily calculable once the coordinate transformation has been defined.

The transformed space can encompass any type of electromagnetic behavior one

desires provided a one-to-one transformation exists between the coordinate systems.

Simple waveguide bends, field concentrators, and space that contains holes where no

radiation is present are just some examples that have been simulated in computational

6



software packages. These transformed spaces and simulation results are shown in

Figure 1.3.

Figure 1.3: Transformation spaces such as a waveguide bend [93], a field concen-
trator [73], and a cylindrical cloak [56]

At this point, it is instructive to discuss precisely how the medium’s constitu-

tive parameters are derived. As an example, consider electromagnetic cloaking. The

ability to cloak an object using metamaterials (defined in Chapter III) was first dis-

cussed by Pendry et al. [72] and Leonhardt [55] in 2006. The techniques discussed

by each are similar, but this research focuses on Pendry’s method, which uses the

transformation optics approach described above. An electromagnetic cloak guides

energy around a particular region much like flowing water is guided around a stone.

The hidden region is void of electromagnetic energy, meaning an object can be placed

in the hidden region without perturbing the field. What follows below is an example

of the transformation optics approach used to derive the material parameters for an

infinitely long cylindrical electromagnetic cloak.

1.2.1 Transformation Optics Cloaking Example. Per transformation optics,

the behavior of electromagnetic waves in a transformed coordinate system can be

modeled in Cartesian coordinates using a material with specific permittivity and

permeability tensors [72, 97]. This derivation is shown in detail in Appendix A, and
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the resulting constitutive parameter tensors are given by

ε̂ij = gij |û1 · (û2 × û3)|Q1Q2Q3(QiQj)
−1, (1.2)

µ̂ij = gij |û1 · (û2 × û3)|Q1Q2Q3(QiQj)
−1, (1.3)

where gij are the components of the inverse of the coordinate system’s metric tensor

which is defined as

g =




û1 · û1 û1 · û2 û1 · û3

û2 · û1 û2 · û2 û2 · û3

û3 · û1 û3 · û2 û3 · û3


 . (1.4)

Note ûi are the unit vectors in the i = 1, 2, 3 direction in the transformed coordinate

system, and

Qij =
∂x

∂qi

∂x

∂qj

+
∂y

∂qi

∂y

∂qj

+
∂z

∂qi

∂z

∂qj

, (1.5)

Q2
i = Qii, Qi =

√
Qii. (1.6)

An electromagnetic cloak can be developed by creating a transformed coordinate

system that contains voids where electromagnetic energy will not propagate. The

electromagnetic field behavior in the transformed coordinate system is then mimicked

in Cartesian coordinates using a material with permeability and permittivity whose

properties are described by Equations 1.2 and 1.3.

Consider a transformed cylindrical coordinate system with coordinates (r′, θ′, z′)

such that all points in Cartesian space where r < b are mapped to the annular region,

a < r′ < b. This can be written mathematically as

r′ =
(
1− a

b

)
r + a, (1.7)

where r′ is the radial location in the transformed coordinate system and r is the radial

location in a Cartesian coordinate system. The result is a transformed coordinate

system where there are no points in the region r′ < a. This is shown in Figure 1.4. In

8



Figure 1.4: Transformed Coordinate System

the transformed coordinate system, no electromagnetic energy will propagate in the

region r′ < a because this region theoretically does not exist. Space is curved around

it.

The permittivity and permeability tensors which electromagnetically mimic the

curvature of the transformed space can be found as follows. The mapping from the

transformed coordinate system where r′ < a does not exist to Cartesian coordinates

can be written as

x =
(r′ − a)b

b− a
cos θ′, y =

(r′ − a)b

b− a
sin θ′, z = z′. (1.8)

Note the transformed coordinate system is an orthogonal coordinate system with unit

vectors r̂, θ̂, and ẑ. Thus, the metric tensor is

g =




r̂ · r̂ r̂ · θ̂ r̂ · ẑ
θ̂ · r̂ θ̂ · θ̂ θ̂ · ẑ
ẑ · r̂ ẑ · θ̂ ẑ · ẑ


 =




1 0 0

0 1 0

0 0 1


 . (1.9)

This result simplifies the expressions in Equations 1.2 and 1.3 due to the fact

gij
∣∣∣r̂ ·

(
θ̂ × ẑ

)∣∣∣ = δij, (1.10)
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where δij is the Kronecker delta function. Next, the Q2
i values can be found.

Q2
1 =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

(1.11)

Q2
2 =

(
1

r

∂x

∂θ

)2

+

(
1

r

∂y

∂θ

)2

+

(
1

r

∂z

∂θ

)2

(1.12)

Q2
3 = 1 (1.13)

The partial derivatives can be expressed as

∂x

∂r
=

b

b− a
cos θ,

∂y

∂r
=

b

b− a
sin θ,

∂z

∂r
= 0. (1.14)

1

r

∂x

∂θ
= −(r − a)b

b− a

sin θ

r
,

1

r

∂y

∂θ
=

(r − a)b

b− a

cos θ

r
,

1

r

∂z

∂θ
= 0. (1.15)

∂x

∂z
= 0,

∂y

∂z
= 0,

∂x

∂z
= 1. (1.16)

Multiplying out, the result is

Q1 =
b

b− a
, (1.17)

Q2 =
r − a

r

b

b− a
, (1.18)

Q3 = 1. (1.19)

Using these values in Equations 1.2 and 1.3 results in the following for the permittivity

and permeability tensors [79].

εr = µr =
r − a

r
(1.20)

εθ = µθ =
r

r − a
(1.21)

εz = µz =

(
r − a

r

)(
b

b− a

)2

(1.22)
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These can be rewritten as a tensor where the non-diagonal terms in the tensor matrix

are zero.

↔
µ =

↔
ε =




r−a
a

0 0

0 r
r−a

0

0 0
(

b
b−a

)2 r−a
r


 (1.23)

A material with the parameters shown in Equation 1.23 and immersed in free space

will guide all electromagnetic energy around the region, r < a, much like the energy

would propagate in the transformed coordinate system shown in Figure 1.4. Thus,

any object placed in this region will not scatter any electromagnetic energy. Hence,

the material parameters shown in Equation 1.23 effectively define an electromagnetic

cloak.

1.2.2 Cloaking and Transformation Optics. As shown in the previous sec-

tion, it is theoretically possible to guide incident electromagnetic energy around an

object such that the object has no scattered field. One simply needs to use a material

having the constitutive properties described by Equation 1.23. Transformation optics

led to this result and, in essence, showed cloaking is theoretically possible [72]. How-

ever, this does not mean the hard part is done. Quite the contrary, the difficulty lies in

developing a material with the desired constitutive parameters. Note the spatial vari-

ation in the cylindrical cloak’s material parameters. Adding to the complexity is the

material parameter anisotropy. A material with the properties shown in Equation 1.23

does not exist naturally. Fortunately, advances in micro- and nano-fabrication meth-

ods have allowed the creation of man-made materials using sub-wavelength structures

with the desired material properties dictated by transformation optics [83]. Such ma-

terials are commonly referred to as metamaterials. Metamaterials are the enabling

building blocks to a number of applications spawned from transformation optics.

Metamaterials will be discussed in detail in Chapter III.

Metamaterials do not yet enable one to manufacture an ideal cloak with the pa-

rameters describe by Equation 1.23. At r close to a, the diagonal terms in Equation

11



1.23 are going to either zero or infinity. A material with infinite permittivity/per-

meability will likely never be possible to manufacture. Also, all existing materials

have at least some type of loss. Creating lossless materials, particularly those with

magnetic effects, is extremely difficult. Additionally, the required material param-

eters have anisotropic and spatially varying µ and ε, which is quite challenging to

make. However, simplifications to the material parameter set can be made (Section

2.2). These simplifications result in less-than-ideal cloaking performance, but the

end result does maintain some of the ideal cloak’s electromagnetic wave-controlling

properties. A simplified cylindrical cloak with a material parameter set derived from

the ideal parameters shown in Equation 1.23 has recently been manufactured and

tested [79] with promising results.

1.2.3 Cloaking and the Speed of Light. It has been shown it is possible to

cloak a region of space such that an observer would not see any difference in the

electromagnetic fields when an object is placed in this hidden region. This seems to

violate the fact that energy cannot propagate faster than the speed of light. After

all, the energy must be bent around an object and maintain the same relative phase

as the energy propagating in free space. Since curving around an object requires the

energy to travel a further distance, it seems that the energy must propagate faster

than the speed of light. However, this is not exactly how the cloaking process works.

The energy does have to travel a longer distance. However, the cloak is not trans-

porting energy faster than the speed of light. Rather, stored energy built up during

the transition from the transient to the steady-state phase allows only one specific

frequency’s phase fronts to exceed the speed of light [2]. This was demonstrated by

Liang et al. using a finite-difference time-domain (FDTD), with the results shown in

Figure 1.5. Note how it does take some time for the cloak to reach its stable state.

The time in Figure 1.5 image (a), where the incident wave first reaches the cloak until

steady-state is reached in image (f) is approximately 15 periods of the the incident

field [59].
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Figure 1.5: Cylindrical cloak response in the transient to steady-state phase. [59]

While still a long way from implementing a cloaking device as seen in Star Trek,

cloaks present a new paradigm in terms of RCS reduction, whether it be creating an

ideal cloak (not likely in the near future) or using a modified cloaking structure in

conjunction with shaping and RAM to further reduce an object’s overall signature.

Developing a cloaking mechanism for a support pylon on an RCS range could help

reduce the target-pylon interactions which result in the undesired scattered fields due

to target-pylon interactions discussed in Section 1.1.

1.3 Summary of Research Goals

The intent of this research is to investigate whether cloaks are a viable option

for the stated long-term problem. Obviously, a three-dimensional cloak would be re-

quired for any real implementation. For this research, however, only two-dimensional

cylindrical cloaks are considered. This is due to the fact computer requirements for

three-dimensional cloak simulations are rather extensive, whereas two-dimensional

simulations are easily performed on a standard desktop computer. The work is likely

extendable to the three-dimensional case, although there are definite issues which

must be considered (Section 7.2). Additionally, a unique way to design metamateri-

als to increase their bandwidth is investigated.
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There are two main thrusts of this research. First, a way to develop simplified

material parameter sets for cylindrical cloaks is investigated. This is important be-

cause for the parameter set defined by Equation 1.23, at the location r = a, µr, εr, µz,

and εz all equal zero while µθ and εθ are both infinite. These values are unattainable

no matter how evolved metamaterial manufacturing capability becomes. There have

been some generic simplified parameter sets published in the literature. These simpli-

fied parameter sets maintain some cloaking capability, but because their constitutive

parameters are not ideal, cloaking functionality is degraded (Section 2.2). A method

to define a simplified parameter set based on the existing metamaterial manufacturing

capabilities has not been developed. Such a process would enable cylindrical cloak

parameters to be defined in terms of what is achievable, thereby not putting limits or

requirements on the manufacturing processes. As the ability to manufacture meta-

materials continues to advance, material parameter sets with more difficult values

will be able to be obtained.

The second thrust of this research involves increasing the effective bandwidth

of cloaks. Note the ideal cylindrical cloak’s material parameters shown in Equation

1.23 are independent of frequency. Hence, in theory the cloak is wide band and

would be well suited for helping to reduce a pylon-target interaction. However, cur-

rent research has shown passive metamaterials used to realize a cloak have a very

narrow operational bandwidth (Chapter III). Therefore, a cloak constructed using

these metamaterials would be operationally limited to a small range of frequencies.

The narrowband nature of metamaterials does create a problem because RCS ranges

operate over a significant bandwidth. A narrow band solution would not be of much

use. This research investigates a unique way to increase the bandwidth of a meta-

material. Making the building blocks have a broadband response would result in the

cloak being operational over a larger band of frequencies and would help make cloaks

a more viable option for reducing RCS measurement error.
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1.4 Dissertation Organization

This dissertation is organized as follows. Background information on cloaking

theory, the cylindrical cloak, simplified cloaks, and alternatives to cloaking are covered

in Chapter II. Chapter III examines fundamentals in metamaterials and how they

are designed in order to create artificial magnetic and electric effects. Additionally,

common methods used to measure the constitutive properties of metamaterials are

explained. Chapter IV derives a new constraint equation on the material parameters

for ideal cylindrical cloaks, which is then used as the foundation to develop simpli-

fied material parameter sets. Chapter V shows how a Green’s function formulation

can be used to decrease solution time for a cylindrically cloaked perfect electrically

conducting (PEC) cylinder. Chapter VI investigates a method to design and possibly

increase the bandwidth of metamaterials. Finally, in Chapter VII, conclusions for the

research are summarized with recommendations for future research.
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II. Cloaking Background

The transformation optics design approach discussed in Chapter I provides a recipe

for various types of electromagnetic field control. This research focuses on electro-

magnetic cloaking, which was first put forth by Pendry et al. in 2006 [72]. Since the

publication of this ground-breaking work, there have been numerous papers published

analyzing the behavior of ideal cloaks using common electromagnetic analysis tech-

niques. The relevant works are discussed below. As noted in Section 1.2.2, materials

for an ideal cylindrical cloak do not exist, neither naturally nor can they be perfectly

manufactured. This limitation necessitates simplified parameter sets. A number of

simplified parameter sets for a two-dimensional cylindrical cloak have been devel-

oped. These are discussed in addition to their various short-comings. Finally, other

cloaking options not based on transformation optics are briefly discussed and docu-

mented. The limitations associated with ideal cloaking that involve the design and

manufacture of metamaterials will be discussed in Chapter III.

2.1 Perfect Cloaking Theoretical Analysis

Since Pendry et al.’s initial paper in 2006, there has been a significant effort

confirming that perfect cloaking is theoretically possible, assuming the ideal consti-

tutive parameters dictated by transformation optics could be achieved. Schurig et

al. developed a method to perform ray-tracing within a cloak in order to confirm the

cloak behaves as theoretically derived [81]. For spherical and cylindrical cloaks, they

showed via ray-tracing the complex material acts as a perfect cloaking mechanism

for the desired hidden region while resulting in no perturbation to the incident ray

trajectory outside the cloaking body.

Leonhardt and Philbin demonstrated how transformation optics and the associ-

ated behavior of the electromagnetic fields can be described using the general theory of

relativity [56]. They developed a formulation which takes a desired function, whether

it be cloaking, perfect lenses, or the behavior of artificial black holes, and finds the

properties of the material needed to generate the desired behavior. They showed the
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behavior of electromagnetic fields in cloaks can be included and described within the

framework of general relativity, which further solidified the validity of electromagnetic

cloaking as described by transformation optics.

Chen et al. performed a full wave Mie scattering analysis on a spherical cloak

[18]. They quantitatively solved for the scattered fields from an ideal spherical cloak

and determined the scattering would be identically zero. When loss was introduced to

the cloaking material, bistatic scattering resulted, with larger losses equating to larger

scattered fields. However, the addition of loss did not affect the back-scattered field

in that the monostatic return was still zero. This result is very different from that

of regular particles and applies only to the spherical cloak. When introducing loss to

the ideal parameters for a cylindrical cloak, the monostatic return is not identically

zero.

Ruan et al. used cylindrical wave expansion to solve for the scattered field from

an ideal cylindrical cloak. They also solved for the field transmitted into the hidden

region. They confirmed by applying boundary conditions the ideal cloak is perfect by

proving the coefficients for the scattered field from the cloak and the transmitted field

into the hidden region were all zero [77]. This proved a cylindrical cloak with the ideal

parameters shown in Equation 1.23 has no reflected field in addition to providing a

hidden region (r < a in Figure 1.4) which is completely shielded from electromagnetic

energy.

Weder studied first-order and higher-order spherical cloaks. He proved for any

frequency that ideal cloaks have no scattered field. Additionally, he showed that no

incident energy can penetrate into a cloak’s hidden region, and that if a source were

placed in the hidden region, its energy would not leave the concealed area [98]. This

makes sense because reciprocity holds for spherical cloaks since the permittivity and

permeability tensors are symmetric [52].

Zhang et al. developed the equations to formulate the material parameters

necessary to cloak an object in a slowly varying, multilayered, inhomogeneous envi-
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ronment [106]. The work by Pendry et al. assumed a cloak immersed in homogeneous

free space. Zhang et al.’s analysis is similar to the original work by Ward and Pendry.

Their simulations showed successful cloaking of an object. The application for their

work is cloaking objects in a layered media or at an interface between two media,

such as a ship at sea or a building in the hot desert air.

A computer simulation of the perfect two-dimensional cylindrical cloak was done

by Cummer et al. They performed a full-wave finite element method (FEM) simu-

lation of the ideal two-dimensional cylindrical cloak using the Comsol Multiphysics

FEM-based electromagnetics solver [28]. They simulated the two-dimensional cylin-

drical cloak for both lossless and lossy materials using a transverse magnetic (TMz)

incident wave (an electromagnetic wave with only a ẑ-component for the electric field

vector). Their simulation results clearly showed the cloak operating as theoretically

predicted with some degradation in performance when loss was introduced.

There are a number of papers which derive the theoretical equations for various

cloaking geometries. Ma et al. [60] used the transformation optics algorithm described

by Pendry et al. to derive the material parameter equations for an elliptical cylindrical

cloak with similar results shown in [45]. Kwon and Werner did a similar analysis,

but they considered an eccentric elliptic electromagnetic cloak [53]. Rahm et al.

designed and simulated a square cloak and a cylindrical concentrator, which, instead

of cloaking a certain region, focuses fields from one region into another [73]. Jiang et

al. considered conformal, arbitrarily shaped cloaks [44]. These papers all performed

simulations using the Comsol Multiphysics software package, and the results clearly

showed the cloaks (or the concentrator) working as predicted by the original theory.

Zhao et al. performed a full-wave FDTD analysis of a two-dimensional cylin-

drical cloak. They used the Drude dispersion model to represent the permittivity

and permeability of the cloak’s material parameters. As with other simulations, they

found a cloak with ideal parameters effectively hides an object placed within the

cloaking shell from incident electromagnetic energy. Liang et al. also performed
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FDTD simulations on a cylindrical cloak and found the cloak to work as expected.

However they noted a strong forward scattering from the cloak during the dynamic

processes when the incident waveform first strikes the cloak, an effect that can be

controlled by varying the dispersive parameters in the Drude model [59].

These theoretical results support the original derivation that a cloak of a specific

geometry with material parameters derived according to the transformation optics

method put forth by Pendry et al. does indeed result in a perfectly cloaked region.

2.2 Simplified Cylindrical Cloaks

This section focuses solely on two-dimensional cylindrical cloaks. The units for

this geometry in this work are (r, φ, z), which is consistent with the work published

by Schurig et al. [79]. The cylindrical cloak has a hidden region located at r < a,

where a is the inner boundary. Objects placed in the hidden region are completely

shielded from electromagnetic energy. The outer boundary of the cloak is located at

r = b. Additionally, all analysis in this work assumes plane wave incidence. This

geometry is shown in Figure 2.1.

Figure 2.1: Two-dimensional cylindrical cloak geometry
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When examining the material properties of a cylindrical cloak (Equation 1.23),

it is obvious such a material would not likely occur naturally. First note the cloak

is lossless. All materials have loss, and it is very difficult to manufacture magnetic

materials with even small losses. Also, µr, εr, µz and εz all equal zero at r = a.

Additionally µθ and εθ are each infinite at r = a. Thus, not only are these materials

not naturally occurring, it is not currently possible to manufacture them, nor is it very

likely technology would ever enable the manufacture of infinite values. Because of this,

simplified parameter sets have been derived with the intent of creating manufacturable

constitutive parameter values while limiting the reduction in cloak functionality as

much as possible.

As a way to reduce the number of constitutive parameters required to realize

a manufacturable cloak, the incident field can be decomposed into transverse electric

(TE) and transverse magnetic (TM) field components. Thus, for TEz fields only µz,

εr, and εθ are required when analyzing field behavior. TMz fields require εz, µr, and

µθ.

The first sets of simplified material parameters for a cylindrical cloak were

developed for specific incident field polarizations with the goal of satisfying the same

governing wave equation within the simplified cloak that is satisfied in the ideal

cloak [79]. For an assumed incident field type, Maxwell’s equations can be used to

define a wave equation that governs the field behavior within a given space. Assuming

TMz incidence, Maxwell’s equations can be expressed as

Ez =
1

jωεzεor

[
∂(rHθ)

∂r
− ∂Hr

∂θ

]
, (2.1)

Hr = − 1

jωµrµor

∂Ez

∂θ
, (2.2)

Hθ =
1

jωµθµo

∂Ez

∂r
, (2.3)

where Ez is the ẑ-component of the electric field, Hr is the r̂-component of the

magnetic field, Hθ is the θ̂-component of the magnetic field, r is the radial location,
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εo and µo are the permittivity and permeability of free space, εz, µθ, and µr are the

relative permittivity and permeability tensor values, and ω is the angular frequency of

the incident electromagnetic field. The general wave equation governing the behavior

of TMz fields within a complex anisotropic material with spatially varying constitutive

parameters can be developed by substituting Equations 2.2 and 2.3 into Equation 2.1.

Ez =
1

jωεzεor

[
∂

∂r

(
r

jωµθµo

∂Ez

∂r

)
− ∂

∂θ

(
− 1

jωµrµor

∂Ez

∂θ

)]
(2.4)

Note that j, ω, µo, and εo are all independent of r and θ. Therefore, they can be

removed from the differentiation operations.

Ez = − 1

ω2µoεoεzr

[
∂

∂r

(
r

µθ

∂Ez

∂r

)
+

∂

∂θ

(
1

µrr

∂Ez

∂θ

)]
(2.5)

Since r is not a function of θ, it can be removed from the ∂
∂θ

operation. Additionally,

ko is the free-space wave number defined as ko = ω
√

µoεo. Therefore, Equation 2.5

can be rewritten as

1

εzr

[
∂

∂r

(
r

µθ

∂Ez

∂r

)]
+

1

εzr2

∂

∂θ

(
1

µr

∂Ez

∂θ

)
+ k2

oEz = 0. (2.6)

Equation 2.6 is the general wave equation that describes the behavior of a TMz

electromagnetic field in a cylindrical anisotropic media. This equation will be used

in the development of simplified constitutive parameter sets for cylindrical cloaks.

Schurig et al. were the first to derive a set of simplified material parameters for

a two-dimensional cylindrical cloak [79]. However, when deriving the wave equation

that governs the fields within the cloak, the procedure they used assumed a priori

µθ was constant. Their intent was to eventually simplify µθ to a constant value, but

doing so when developing the wave equation was mathematically incorrect [101,102].

Because of this error, Schurig et al. simply removed µθ from the differentiation

operation with respect to r in Equation 2.5. Thus, the following was thought to be
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the wave equation for TMz fields in a complex anisotropic medium.

1

εzµθ

∂2Ez

∂r2
+

1

εzµθ

1

r

∂Ez

∂r
+

1

εzµr

1

r2

∂2Ez

∂θ2
+ k2

oEz = 0 (2.7)

Note Equation 2.7 does not equal Equation 2.6 if µθ is r-dependent. Not realizing

this, Schurig et al. then substituted the ideal cylindrical cloak’s material parameters

for a TMz incident field into Equation 2.7. The following is the result.

(
b− a

b

)2
∂2Ez

∂r2
+

(
b− a

b

)2
1

r

∂Ez

∂r
+

(
b− a

b

)2 (
1

r − a

)2
∂2Ez

∂θ2
+ k2

oEz = 0 (2.8)

Schurig et al. believed Equation 2.8 was the correct wave equation for TMz fields in an

ideal cylindrical cloak. Their goal was to develop a simplified cylindrical cloak whose

internal field behavior would match the field behavior in a cloak with ideal parameters.

Therefore, they compared Equations 2.7 and 2.8 and concluded the following were

the only material constraints on a simplified cylindrical cloak’s material parameters

for TMz incident fields in order for the electric field to satisfy the same wave equation

as that of an ideal cloak [79].

1

εzµθ

=

(
b− a

b

)2

(2.9)

1

εzµr

=

(
b− a

b

)2 (
r

r − a

)2

(2.10)

By examining Equations 2.9 and 2.10, Schurig et al. developed the following set of

material parameters for a simplified cylindrical cloak.

µr =

(
r − a

r

)2

, µθ = 1, εz =

(
b

b− a

)2

. (2.11)

Note that µθ is indeed a constant like they assumed, but because this was assumed

before all mathematical operations were completed, their results were not entirely

correct. The material parameters shown in Equation 2.11 do satisfy Equations 2.9

and 2.10, and, as will be shown in Chapter IV, Equations 2.9 and 2.10 are some (but
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not all) of the constraint equations on the material parameters for an ideal cylindrical

cloak. Thus, the simplified parameters developed by Schurig et al., though obtained

using a method with a mathematical error, did show good results. Simulations showed

a cloak with these simplified parameters maintained much of the power-flow bending

and low-reflection characteristics of the ideal cloak [28].

These simplified parameters are not nearly as complex as the ideal material

parameters from a manufacturing perspective, as εz is now position invariant. Addi-

tionally, Schurig et al. defined µθ = 1 because this is an easily obtainable value. The

only spatially varying parameter is µr. No parameters are infinite and only µr = 0 at

r = a. However, in order to realize such a device, one further simplification had to be

made. Note that µr is still spatially varying. Concentric, homogeneous layers with

µr = µn were used, where µn is a constant value for the nth layer. A cloak with these

simplified parameters was manufactured using metamaterials [79]. The results were

not as good as the simulated values with varying µr, but they did show the ability to

partially cloak an object.

The simplified parameter set shown in Equation 2.11 was used in the design and

simulation of a cloak manufactured using metamaterials consisting of high permittiv-

ity ferroelectric rods. Gaillot et al. used metamaterial building blocks consisting of

BaxSr1−xTiO3 rods, and by adjusting the rod radii, they could control the resonant

frequency. Much like Schurig et al., Gaillot et al. created the radial variation in µr

by creating layers of concentric rings. The difference is the operating frequency of

their cloak was 0.58 THz compared to 8.5 GHz for the Schurig et al. cloak. Gaillot

et al. also performed simulations using the commercial FEM software package, High

Frequency Structure Simulator. Their work was unique because, unlike Cummer et

al. in [28], Gaillot et al.’s simulated the individual building blocks of their cloak i.e.

the metamaterial structures. Cummer et al. used continuous subdomains in their

simulations. The results of Gaillot et al.’s work showed a simplified cloak with some

of the ideal characteristics operating in the THz region [35].
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The original simplified parameter set was used to develop a material parameter

set for construction of a non-magnetic simplified cylindrical cloak for TEz incident

fields at optical frequencies [14]. A non-magnetic cloak was desired due to the dif-

ficulty in manufacturing materials with a magnetic response at optical wavelengths.

Recall for TEz incident fields, the constitutive parameters required are µz, εθ, and εr.

Following a derivation process similar to that done by Schurig et al. and described

above, the constraint equations for TEz incident fields were thought to be

1

µzεθ

=

(
b− a

b

)2

, (2.12)

1

µzεr

=

(
b− a

b

)2 (
r

r − a

)2

. (2.13)

Using Equations 2.12 and 2.13 and the desire to limit the material parameters to

non-magnetic effects, the following simplified material parameters were developed.

µz = 1, εθ =

(
b

b− a

)2

, εr =

(
b

b− a

)2 (
r − a

r

)2

(2.14)

Much like the results in [28], simulations showed this simplified cloak maintains some

of the characteristics of the ideal cloak [14].

There have been improvements to the original simplified parameters. An ob-

vious shortcoming of the original simplified parameters is the large reflection at the

cloak’s outer boundary. The ideal cloak has an impedance matched to free space at

r = b. The original simplified cloak does not, resulting in a significant reflection at

the cloaking body and free space interface. To fix this problem, it was noted the

transformation, denoted as g(r′), mapping the space r′ < b to the cylindrical shell

a < r < b, can have multiple forms [15]. The linear transformation has the form

r = g(r′) =
(
1− a

b

)
r′ + a, (2.15)
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while a quadratic transformation can have the form

r = g(r′) =
[
1− a

b
+ p (r′ − b) + 1

]
r′ + a. (2.16)

As before, a and b are the inner and outer radii of the cloak while p is a parameter

which will be determined shortly. It can be shown using the procedure developed

in [72] the material parameters for the ideal cylindrical cloak can be represented as

εr =

(
r′

r

)
∂g(r′)
∂r′

, εθ =
1

εr

, εz =

(
r′

r

) [
∂g(r′)
∂r′

]−1

, (2.17)

µr =

(
r′

r

)
∂g(r′)
∂r′

, µθ =
1

µr

, µz =

(
r′

r

)[
∂g(r′)
∂r′

]−1

. (2.18)

A reduced parameter set was desired for TMz incident fields. When simplifying the

ideal parameter set shown in Equations 2.17 and 2.18, the constraints defined by

Equations 2.9 and 2.10 were used as the only limits on the material parameters.

Hence, by setting εz = 1, the following define a set simplified parameters.

µr =

(
r′

r

)2

, µθ =

[
∂g(r′)
∂r′

]−2

, εz = 1. (2.19)

To match the impedance to free space at r = b, the following constraint was applied.

Z|r=b =

√
µθ

εz

=
∂g(r′)
∂r′

∣∣∣∣
r=b

= 1 (2.20)

Using the condition imposed in Equation 2.20, the variable p in Equation 2.16 is

found to be p = a
b2

. For g(r′) equal to that shown in Equation 2.16 with p = a
b2

,

the parameter set is called a quadratic cloak [15]. The quadratic cloak satisfies the

material constraints shown in Equations 2.9 and 2.10 and has a matched impedance

at r = b. A limit on the quadratic cloak is the value a
b

< 0.5 to ensure a monotonic

transformation [15]; however, its performance in terms of reducing the scattering

width of a PEC cylinder was better than that of the cloak with the original simplified

parameters.
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A second set of material parameters with a matched impedance at r = b that

satisfies equations (2.9) and (2.10) was developed [102]. These are shown below.

µr =

(
r − a

r

)2
b

b− a
, µθ =

b

b− a
, εz =

b

b− a
. (2.21)

To the author’s knowledge, the parameter set in Equation 2.21 was not derived from

a governing equation. Rather, the values seem to have been found by simply using

Equations 2.9 and 2.10 and determining values which satisfy these constraints while

also having a matched impedance at r = b. For this work, the cloak with parameters

shown in Equation 2.21 will be called the improved cloak. The performance in terms

of reducing the scattering width of a cloaked PEC cylinder by the improved cloak

and the quadratic cloak are similar for certain values of a and b. However, it has

been shown the improved cloak has a more consistent performance as the ratio of a
b

varies [102]. Additionally, the improved cloak has only one spatially varying material

parameter while the quadratic cloak has two, making the improved cloaks parameters

easier to manufacture than those of the quadratic cloak.

2.3 Cloaking Limitations

As stated in the previous section, the ideal cylindrical cloak has constitutive

parameters equal to zero or infinity, values which are not possible to obtain and are

the motivation to develop simplified parameter sets. It is obvious since the ideal

parameter values won’t be obtained, there will be a reduction in cloak performance.

Isić et al. analyzed cloak performance based on the inability to precisely manufacture

the ideal cloak’s constitutive parameters [43]. Note for the ideal cloak, µr = 0 at the

inner boundary, r = a. This also means µθ →∞ at the outer boundary, r = b. It is

not possible to achieve these values. For their analysis, Isić et al. let the parameters

for a TMz incident wave be

µr =
r − b(a−r1)

b−r1

r
(2.22)
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µθ =
r

r − b(a−r1)
b−r1

(2.23)

εz =
r − b(a−r1)

b−r1

r

(
b− a

b− r1

)2

(2.24)

The parameter, r1, is a measure of the imperfectness of a cloak. An ideal cloak has

r1 = 0. At this value Equations 2.22 - 2.24 simplify to the ideal parameters. Defining

δµr = µr(r = a)− µrideal
(r = a) (2.25)

and since µrideal
(r = a) = 0, they solve for r1 to be

r1 =
abδµr

b− a(1− δµr)
. (2.26)

For a TMz plane wave incident on the imperfect cloak, and with a PEC cylinder placed

in the hidden region, they solved boundary conditions and found the coefficients for

the scattered field. For small r1, the dominant scattering term is the zeroth order

mode, which matches the results of Ruan et al.. Isić et al. defined q as the ratio of

the scattering width of an uncloaked PEC cylinder to that of a cloaked PEC cylinder

and find that

q ∼= 2.29 ln2(kor1)

πλo

. (2.27)

If one-order of magnitude scattering width reduction is desired, q = 10. The param-

eters r1 and δµr can be found using Equations 2.26 and 2.27. For q = 10, λo = 0.25

m, a = λo, and b = 2λo, they found that δµr
∼= 0.01. This means in order to reduce

the scattering width by 10 dB using a cylindrical cloak, the constitutive parameter,

µr = 0.01 at r = a [43]. Such manufacturing control is possible, but anything more is

approaching the current technological limit. In [42], Isić et al. provide a more mathe-

matically rigorous derivation of the scattering from imperfect cloaks. They conclude

that a PEC object placed in the hidden region of an imperfect cloak has a reduction in

its echo width by a factor of a
r1

[42]. They consider one order of magnitude reduction

an optimistic result.
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Ruan et al. performed a similar analysis and examined the effects of a slight

perturbation in the location of the cloak’s inner boundary. They found even small

perturbations result in scattering from the cloaking body. A perturbation takes the

form of the inner cloak boundary being located at a distance r = a + δ instead

of the ideal location r = a. Even for very small δ, such as δ = 10−5a, there is a

noticeable scattered field [77]. The size of the scattered field is dependent on the

cloak geometry. As an example, consider a cloak with boundaries a = λ and b = 2a.

A ẑ-directed incident and scattered electric field can be represented using cylindrical

wave expansion as [13]

Ei
z = Eo

∞∑
−∞

anJn(kr)ejnφ, (2.28)

Es
z = Eo

∞∑
−∞

cnH(2)
n (kr)ejnφ, (2.29)

where Eo is a constant value. The scattering coefficient for each order can be defined

as

αs
n =

cn

an

. (2.30)

For δ = 10−5a, |αs
0| = 0.175. For orders where n 6= 0, |αs

n| < 10−9, meaning the

zeroth order is the dominant scattering term. Additionally, it was shown as δ → 0,

convergence of |αs
0| is slow [77].

In addition to having constitutive parameters which are unattainable, perfect

cloaks also have a bandwidth issue. Yao et al. investigated whether or not the

material making up an electromagnetic cloak could be frequency invariant [104]. They

concluded that, due to causality, the cloak must be dispersive. A nondispersive cloak

results in group velocities greater than the speed of light. Additionally, they found

there must be a strong absorbtion at the cloak’s frequency of operation. This results

in a significant forward shadow. They did conclude the cloak is an effective instrument

to reduce backscatter but only for a narrow bandwidth.
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Chen et al. had similar conclusions regarding the bandwidth as a result of

the limit imposed on group velocities [20]. They considered a more generic form of

the cylindrical transformation such that they are mapping the region ro ≤ r ≤ b to

a ≤ r ≤ b. In the example in Section 1.2.1, ro = 0. Chen et al. showed perfect

cloaking is possible only at one single frequency. If more than one frequency is

considered, the group velocities exceed the speed of light. Therefore, they considered

a cloak such that ro is now a function of frequency, ro(ω). Note ro(ω) can be zero

at one particular frequency and also have small, but non-zero values throughout a

nearby bandwidth. They simulated a cloak with the following material parameters.

µr =

(
r − a

r

)2

, µθ = 1, εz =

(
b− ro(ω)

b− a

)2

. (2.31)

They show the bandwidth limitation for this material parameter set to be

∆ω

ω
≤ ∆ro

a
. (2.32)

They simulated their designed cloak and found it to have an operational bandwidth

from 8.5 - 8.75 GHz, with the cross section of a PEC cylinder being 30% compared

to that of an uncloaked cylinder.

As a way to increase the operational bandwidth of a cylindrical cloak, Wang

et al. proposed creating a cylindrical cloak out of active metamaterials [96]. They

designed a simplified cylindrical cloak with material parameters shown in Equation

2.14 and repeated below for convenience.

µz = 1, εθ =

(
b

b− a

)2

, εr =

(
b

b− a

)2 (
r − a

r

)2

. (2.33)

Note for their effort, they assumed a TEz incident waveform. For their cloak im-

plementation, they proposed to use active metamaterials. Passive metamaterials are

dispersive (to be discussed in Chapter III) i.e. their constitutive parameters vary as

a function of frequency. For the geometry of their cloak and assumed incident field
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type, the µz and εθ values will be determined by the substrate used in the metamate-

rial manufacture, and the substrate is not dispersive in the desired frequency range.

However, εr is determined by the configuration of the metallic structures within the

metamaterial and is highly dispersive. In order to allow a band of operating fre-

quencies, Wang et al. proposed using a variable capacitor mounted between metal

strips. The capacitance between the metal strips helps control εr. A DC bias can be

used to change the capacitance on the variable capacitor. As frequency is changed,

the capacitance is changed in order to keep the εr at the required value dictated by

Equation 2.33. Wang et al. did not build any devices, but their numeric simulations

showed their concept is valid. The instantaneous bandwidth of the cloak was not

increased, but it was able to operate over a wider bandwidth.

The final work discussed in this section is not really a short-coming of cloaks,

but rather a unique way in which the cloaking capability can be turned off. Chen et

al. used the transformation optics approach to develop a material that when placed

in the hidden region of an ideal cylindrical cloak results in the object within the

hidden region being seen by incident radiation. A PEC cylinder was placed in the

hidden region of an ideal cloak and was coated with a specific anisotropic material

with a negative refractive index. Chen et al. termed this material the anti-cloak.

The anti-cloak effectively annihilates the functionality of the ideal cloak and shifts

the hidden region out to the cloak’s boundary thereby making it visible. They proved

the existence of scattered fields by matching boundary conditions [21].

2.4 Alternate Cloaking Methods

This section is by no means a complete listing of the additional work going on

with regards to cloaking, but it does provide a general summary of additional work

being done in this field.

The work done by Huang et al. is cloaking as described by transformation optics.

However, to implement the cloak, they did not use anisotropic materials. Rather,

they assumed a TEz incident wave and simulated a two-dimensional cylindrical cloak
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realized using homogeneous isotropic materials. They did this by using the fact

a layered structure of homogeneous isotropic material can be treated as a single

anisotropic medium provided the layers are small compared to wavelength [40]. For a

given set of two layers of material that are sufficiently thin, the effective permittivities

are [100]

εθ =
ε1 + ηε2

1 + η
, (2.34)

1

εr

=
1

1 + η

(
1

ε1

+
η

ε2

)
, (2.35)

where η = d2

d1
and di are the thicknesses of the two layers. Huang et al. used Equa-

tions 2.34 and 2.35 to derive the appropriate material parameters and thicknesses for

a cylindrical cloak with parameters defined by Equation 2.33. They approximated the

radial variation in εr using ten anisotropic layers, resulting in their isotropic, homo-

geneous cloak having twenty layers. Their results showed good cloaking performance

with a 12 dB reduction in forward scattering when comparing a cloaked to an un-

cloaked PEC cylinder. There was a reduced scattering for all observation angles, but

the reduction was on the order of 3-4 dB. Since Huang’s method uses homogeneous

materials in their implementation, the bandwidth problem inherent with metamateri-

als (see Chapter III) is somewhat avoided. However, extreme parameter values would

still be required to manufacture such a cloak, and homogeneous materials with these

extreme values over significant bandwidths do not exist.

Alù and Engheta have investigated an alternative method to hide objects [8,9].

Their method uses plasmonic and metamaterial coatings to reduce the scattering from

an object. There are electrical size limitations, but the advantage of their method is

the material coatings are homogeneous and isotropic. A disadvantage is the plasmonic

coating is dependent on the shape and material properties of the object to be hidden.

Miller [65] proposed a method to cloak a region of space that uses sensors and

active surface sources. Passive sensors are used at the boundary of the region to be

cloaked. The incident radiation is sensed, and the type of surface sources to be placed
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which generate the appropriate signals which make the region appear transparent to

the incident field to an outside observer can be mathematically determined. The

method has the advantage of being broadband. The disadvantage is actual imple-

mentation for broad-band electromagnetic waves is difficult due to the speed of prop-

agation. Zambonelli and Mamei proposed something similar by suggesting cloaking

can be achieved by real-time scene manipulation. Active sensor networks embedded

in “garments” (cloaks) could sense the incident electromagnetic energy and then ra-

diate the appropriate response to make the cloak invisible [105]. This work was a

theoretical speculation as to what might be possible in the future as active sensor

technology evolves.

Kildal et al. performed an interesting comparison between the cloaking method

described in [72] and the efficacy of scattering reduction when using geometric shaping

with hard and soft surfaces. Specifically, they compared the theoretical and realizable

performances of cloaking a PEC cylinder of radius 2a using a cloak made of metama-

terials and a shaped geometry with a hard surface. The shaped geometry with hard

surface is limited by the fact the incident angle of the electromagnetic radiation must

be known, whereas a metamaterial cloak theoretically works independent of angle.

However, they state this appears to be the only area where the metamaterial cloak

is better suited, and they are quick to point out a combined TE/TM realization of a

shaped geometry with a hard surface is realizable and performs as well as individual

TE or TM structures. Due to the complex anisotropy of the materials required to im-

plement the metamaterial cloak, only a TM realization has been physically realized.

Additionally the metamaterial cloak has an extremely narrow bandwidth, whereas the

shaped geometry with hard surface have approximately a 20% operational bandwidth.

They conclude Pendry et al.’s cloaking method, while exotic, does not compare to

current technology of shaping and RAM [47].
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2.5 Summary

This chapter presented background analysis showing cloaking as derived from

transformation optics is theoretically possible, although bandwidth will be limited due

to constraints imposed by causality requirements. Additionally, due to singularities

in the required material parameters for a two-dimensional cylindrical cloak, and also

due to the manufacturing constraints, reduced parameter sets were developed. The

reduced parameter sets will be further discussed in Chapter IV. Alternate cloaking

methods were discussed, and the work done by Huang et al. will be used in Chapter

V.
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III. Metamaterials Background

The intent of this chapter is not to define or categorize metamaterials. This is al-

ready an extensive effort, and even the mere definition of metamaterial evokes much

discussion [84]. In this effort, metamaterials will be defined as they were in the work

by Lapine and Tretyakov [54]:

(A) metamaterial is an arrangement of artificial structural elements de-
signed to achieve advantageous and unusual properties.

No specific requirements regarding the material’s resulting constitutive parameters

are stated, nor does this limit previously “named” materials from being included

in this definition. Examples of these older materials are chiral materials, artificial

dielectrics, and artificial magnetics [107]. Newer media that have recently been de-

veloped are Veselago media, which are also known as double-negative (DNG) media.

In a Veselago medium, both the effective permeability and permittivity are less than

zero. Additionally, there are materials where only the permittivity or permeability

is less than zero. These are referred to as epsilon-negative and mu-negative materi-

als respectively [30]. Note that nowhere in this research are materials with negative

permeability or permittivity required. It must also be stressed there is considerable

debate as to the validity of the experimental results proving the existence of DNG

materials [66]; however, the substance of that debate it outside the scope of this effort.

As stated in Section 1.2.2, metamaterials are man-made materials with sub-

wavelength, often periodic structures. The structures are usually metallic. The ge-

ometry and periodicity of the structure enables one to create a material with desired

effective permittivity and permeability values that are either isotropic or anisotropic.

This is advantageous because, as discussed in Chapter II, cloaks require materials

with specific anisotropic constitutive parameters. Precise control of the material

parameters is required during manufacturing because deviations from the specified

values result in degraded performance [42, 101]. Therefore, metamaterials are the

ideal building blocks for not only cloaks, but for any material design created using

the transformation optics approach.
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Metamaterials are typically periodic lattices of unit cells. Within each unit cell is

some type of metallic inclusion whose shape determines the type of bulk effect desired.

In order to realize bulk effective material parameters, the size of a unit cell, a (also

known as the lattice constant), is much smaller than the operating wavelength. There

has not been a theoretically determined limit for a such that if the limit is passed,

the material immediately stops exhibiting bulk constitutive parameters. However,

the rule of thumb appears to be [86]

0.01 <
a

λ
< 0.2. (3.1)

This research focuses on metamaterials operating in the 10 GHz region. At 10 GHz,

the wavelength is three centimeters. Therefore, metamaterial lattice constants will be

no larger than six millimeters. This rule of thumb is crucially important if one is to

properly use Maxwell’s equations in their macroscopic form to analyze metamaterials.

A short-coming of metamaterials is they are dispersive. This means their con-

stitutive parameters vary as a function of frequency. The dispersiveness can be math-

ematically represented using the following general formulas [30]:

ε(ω) = εo

(
1− ω2

pe

ω2 − jΓeω

)
, (3.2)

µ(ω) = µo

(
1− ω2

pm

ω2 − jΓmω

)
, (3.3)

where ωpe is the electric plasma frequency and ωpm is the magnetic plasma frequency

which can be controlled by varying the properties of the unit cell. Γe and Γm are

damping terms associated with losses in the materials.

What follows in the subsequent sections is a discussion of some of the more

common metamaterial structures that are used to artificially create effective electric

and magnetic mediums. Note most of the recent work with metamaterials has been

designing and manufacturing materials that will exhibit negative refraction. As stated

above, negative refraction will not be required for this effort, nor does this effort intend
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to debate the existence of DNG materials. However, the structures used to create

the desired constitutive parameters will be useful. This discussion is by no means

comprehensive, and is intended to give an overview of how metamaterials realize the

desired properties.

3.1 Creating Effective Permittivity

The first work in creating artificial permittivities to result in an electromagnetic

effect was done by Kock in 1946. He used conducting plates of a certain shape

and prescribed spacing to create a microwave lens [50]. An electromagnetic field

incident upon such a structure will undergo a focusing effect, much the same way

light does when refracted by an optical dielectric lens. In essence, the geometry of

the conducting plates created a bulk permittivity as seen by incident electromagnetic

energy. Similarly, Kock used conducting paint on cellophane globes to create a bulk

permittivity effect which helped to reduce the weight of standard dielectric lenses [51].

Since the initial work by Kock, there have been a great number of contributors

to the field of artificial dielectrics. Much effort was done in the 1950’s and 1960’s

to produce artificial dielectrics for use with radar. It is now widely known lattice

structures of metallic spheres, disks, or rods can create a medium with an effective

permittivity. Depending on the spacing between the lattice objects, and the polariza-

tion and frequency of the electromagnetic field, the permittivity varies [23]. Rotman

showed how a periodic lattice of metallic rods can be used to simulate the behavior

of a plasma. Plasmas have a negative permittivity while their relative permeability

is unity. The rodded artificial dielectric in [76] effectively simulated a plasma.

Pendry et al. used a similar structure of thin wires to create an effective negative

permittivity in the gigahertz range. Prior to their work, the electric plasma frequency

(Equation 3.2) was typically confined to the optical frequencies. They achieved the

frequency reduction by emphasizing the requirement for very thin wires, which reduces

the electron density thereby lowering the plasma frequency. Results were obtained

using numerical simulations which confirmed the theoretical derivations [71]. Pendry
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et al. extended their results in [69] by creating an array of gold-plated tungsten wires

with a diameter of 20 µm. The spacing (lattice constant) between the wires was 5

mm. As mentioned in Section 2.2, Gaillot et al used arrays of gold-plated tungsten

rods to create the desired radial permittivity variation in a simulation of a simplified

cylindrical cloak [35].

An alternate way to create an artificial permittivity is to use an electric-inductive-

capacitive (ELC) resonator. An ELC resonator was created because researchers found

fabrication of a three dimensional wire array was difficult, and also that extremely

thin wires have too high of losses [80]. An ELC resonator has a unit cell structure

shown in Figure 3.1.

Figure 3.1: ELC Resonator [80]

The ELC resonator operates as follows. For the field configuration shown in

Figure 3.2, the current flow is due solely to electric field coupling. There is no mag-

netic field coupling because the magnetic field is in the same plane as the device.

Charge builds up on the center T’s which creates a capacitance. The outer loops act

as two oppositely wound inductors. This structure acts as an equivalent circuit where

a capacitor is in parallel with two inductors (Figure 3.2, lower right). For this par-

ticular field configuration, the capacitive element couples to the incident electric field

and gives the metamaterial the artificial permittivity. When the magnetic field is per-

pendicular to the plane of the device, as shown in Figure 3.3, the currents in the loops

cancel, resulting in no magnetic moment. There is no coupling to the electric field be-

cause there is not a significant capacitance which allows current to flow. Controlling
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Figure 3.2: ELC Electric Field Coupling

Figure 3.3: ELC Operation with No Magnetic Field Coupling

the capacitance and the inductance is done by varying the parameters a, d, l, w, and

g shown in Figure 3.1. These parameters determine the resonant frequency of the

device. Schurig et al. obtained simulated S-parameter measurements on an ELC ar-

ray using Microwave Design Studio, an electromagnetics simulation software package

based on a finite integral time domain formulation. They also built a single-layered

array of structures and obtained excellent agreement between extracted parameters

(see Section 3.3) from simulated and experimentally obtained measurements.
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3.2 Creating Effective Permeability

There was a significant push in the late 1990’s to create magnetic effects from

non-magnetic materials due to the quest to create DNG media. A variety of structures

has been analyzed which generate magnetic responses. The following subsections dis-

cuss these structures. The primary focus of the research has been manufacturing

a DNG medium. However, these various structures are beneficial because they en-

able the ability to create metamaterials with a specified permeability at a desired

frequency. The different designs each have their own positive and negative aspects.

3.2.1 Edge Coupled Split Ring Resonator. Pendry et al. developed what is

commonly called the edge coupled split ring resonator (EC-SRR). The basic building

block for the EC-SRR is the split ring structure shown in Figure 3.4. The gold

structures in the figure are thin layers of metal mounted on a substrate. The device

is excited by a plane wave propagating in the plane of the device with the magnetic

field normal to the plane of the rings. Since the magnetic flux is perpendicular to the

Figure 3.4: Edge Coupled Split Ring Resonator

plane of the rings, an electromotive force results causing current to flow. In general,
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the electromotive force is [74]

EMF =

∮
⇀

E · d⇀

l = −jω

∫

S

⇀

B · d⇀

S. (3.4)

The average radius of the two rings is r0. Thus, EMF ∼= −jωπr2
oBz [62]. The

flowing current in the inner and outer rings creates the magnetic moment, resulting

in an artificial permeability. Current flow is possible due to the capacitance in the

ring gaps (t and d in Figure 3.4). A stronger capacitance will result in more current

flowing because capacitance, charge, and voltage are related by [74]

C =
Q

V
. (3.5)

Current flowing in the outer and inner loops results in the device having an inductance

which is related to the radius of the rings. The capacitance and inductance results in

the device having a resonant frequency of 1√
LC

. Detailed analytic derivations for C

and L are provided in [78].

Typically, an EC-SRR is called an SRR. Such a configuration of an EC-SRR

results in a material with an effective permeability described by Equation 3.3, where,

for this geometry, ωpm and Γm are controlled by the various dimensions of the geom-

etry within the unit cell in addition to the lattice spacing [70]. Aydin et al. showed

using simulations and experimentally that increasing both d and t shifts the resonant

frequency higher due to the reduced capacitance [12]. An array of SRRs as shown in

Figure 3.4 in combination with an array of metallic wires was used to create the first

composite DNG medium [88] (although as stated earlier, there is some debating the

meaning of these results).

3.2.2 Omega Split Ring Resonator. Another geometry used to create mag-

netic effects is the Ω ring. However, unlike the EC-SRR, which has no electric effects

without being used in conjunction with a rod lattice, the Ω ring couples to the electric

and magnetic fields. A typical Ω ring geometry is shown in Figure 3.5. Currents are
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Figure 3.5: Ω-Ring Geometry

excited in the rod-portion of the Ω ring due to the incident electric field. Charge builds

up in the gap and the rod ends, resulting electric moments which creates the artificial

permittivity. The magnetic field is normal to the plane of the device. This excites

a current, which flows in the ring portion of the geometry, creating the magnetic

moments resulting in an artificial permeability. An array of Ω rings is bianisotropic.

This is because the charge build up in the rings resulting from the current induced

by the magnetic field results in a series of electric dipoles. Simovski and He showed

that two Ω geometries printed in opposite directions on opposing sides of a dielectric

do not have any magnetoelectric [85]. The opposing direction of current flow in the

rings results in the electric dipoles induced by the magnetic field cancelling. Note the

original EC-SRR developed by Pendry et al. was also shown to have bianisotropic

effects [62], although these effects can be minimized by varying the EC-SRR orienta-

tion throughout a lattice. Huangfu et al. used an Ω-like structure to build a DNG

medium whose effects manifested from 12-13 GHz. Only a periodic structure consist-

ing of elements shown in Figure 3.5 were required. They did not have to include a

lattice of thin metallic wires to generate the negative permittivity. This is because the

rods connecting the Ω structures serve this function. Huangfu et al.’s results showed
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more bandwidth where the DNG effect took place [41], and they also reported smaller

losses than those experiments which used ring geometries.

3.2.3 Additional Structures. O’Brien and Pendry developed what is now

called an axially symmetric ring. The geometry is very similar to the EC-SRR in the

previous subsection except instead of rings, rectangular structures are used. This is

shown in Figure 3.6. The advantage of this type of geometry is the structure is more

Figure 3.6: Axially Symmetric Ring

conducive to manufacturing at the sub-micron wavelengths [68]. These smaller struc-

tures would enable the desired effects to manifest at optical frequencies provided the

metal maintains its good conductor properties at these higher frequencies. O’Brien

and Pendry used a such a structure in conjunction with a lattice of thin metallic wires

to create a DNG medium operational at 76 THz. There are also results presented

in [30] where a negative permeability was demonstrated using an array of axially

symmetric SRRs between 8.2 and 8.7 GHz.

An additional metamaterial structure is called the S-ring. Its geometry is shown

in Figure 3.7. Much like the Ω-ring, the S-ring geometry does not require the use of

metallic rods to generate an electric effect. Chen et al. designed and fabricated a DNG

metamaterial using the S-ring structures, with an operational frequency of 10.9 - 13.5
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Figure 3.7: S-Ring Geometry

GHz, which is a significant increase in bandwidth compared to early implementations

[17]. They performed a detailed theoretical analysis and develop the theory which

governs the effective constitutive parameters of an S-ring metamaterial [16].

There are other types of structures that can be used. In fact, when Schurig et al.

manufactured the first simplified cylindrical cloak, the unit cells contained aspects of

the axially symmetric SRR in addition to the ELC-resonator. A picture of the basic

geometry of the unit cell is shown in Figure 3.8. Changing various dimensions of

the cell (l, s, w, and r) alters the cell capacitance and inductance, thereby creating

the desired permittivity and permeability specified by the simplified cloak’s material

parameters.

Obviously, there are limitless types of geometries which could be used to create

artificial electric and magnetic effects. However, in order avoid simply trial and error,

one must understand how the fields interact with the devices.

3.3 Measuring Metamaterial Constitutive Parameters

As stated in the previous sections, there has been much work developing peri-

odic lattices of unit cells which exhibit artificial permittivity and permeability. This
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Figure 3.8: Unit Cell Geometry for Simplified Cloak Construction [79]

has led to a good understanding of how to create bulk artificial electromagnetic ef-

fects using metamaterials. For most experiments, the proof the metamaterial was

exhibiting DNG behavior was obtained by empirically measuring the refracted angle

of incident energy at various frequencies. If this angle was negative, it was concluded

the material had a negative index of refraction and therefore simultaneously negative

permittivity and permeability. This can be considered an indirect measurement of

the constitutive parameters because the materials themselves were not explicitly mea-

sured. Therefore, direct methods to measure the permittivity and permeability have

been developed. There has been much discussion during the past decade whether

standard material parameter retrieval algorithms can be used when characterizing

metamaterials. In the following sections, a standard material retrieval algorithm is

presented followed by various analyses done on metamaterial characterization using

this algorithm. Limitations of the retrieval algorithm are discussed with possible

alternative measurement techniques documented.

3.3.1 Nicolson-Ross-Weir Algorithm. A common method to extract permit-

tivity and permeability from a homogeneous material slab is to obtain S-parameter
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measurements and then use the Nicolson-Ross-Weir (NRW) algorithm to extract the

constitutive parameters [67, 99]. The NRW algorithm is derived as follows. From a

sample of an infinite length of planar material, it can be shown that

S11 =
R [1− P 2]

1−R2P 2
, (3.6)

S21 =
P [1−R2]

1−R2P 2
, (3.7)

where P = e−jkd and is called the phase delay, k is the wave number in the slab of

material, and d is the material slab thickness [39]. The reflection coefficient, R, from

an infinite slab of planar material in free space is

R =
Z − Zo

Z + Zo

, (3.8)

where Z and Zo are the intrinsic impedance of the material and free space respec-

tively and Z =
√

µ/ε [13]. It has been assumed a transverse electromagnetic wave

propagating in its fundamental mode will be used to interrogate the material. Note

also that k = ω
√

µε = ω
√

µoε0µrεr = ω
c

√
µrεr where c is the free space speed of light.

Thus, by finding R and P , one can use their respective definitions to find µr and εr.

First, one must find expressions for R and P using only the S-parameters. It is

possible to solve Equations 3.6 and 3.7 for P [39].

P =
S21

1−RS11

(3.9)

Equation 3.9 can be used to write a quadratic expression for R.

R2 − 2QR + 1 = 0 (3.10)

where

Q =
S2

11 − S2
21 + 1

2S2
11

(3.11)
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Therefore R is found to have two solutions.

R1,2 = Q±
√

Q2 − 1, (3.12)

The sign choice is made such that |R| < 1 [67]. Note R is now expressed simply

in terms of the S11 and S21 measurements. Once R is found, P can be found using

Equation 3.9 [39].

Equation 3.8 can be expanded using the definition of Z.

R =

√
µrµo

εrεo
−

√
µo

εo√
µrµo

εrεo
+

√
µo

εo

(3.13)

This can be simplified to

R =

√
µr

εr
− 1

√
µr

εr
+ 1

. (3.14)

Rearranging Equation 3.14 leads to the final form

z =

√
µr

εr

=
1 + R

1−R
, (3.15)

where z is commonly called the normalized intrinsic impedance. Similarly, the ex-

panded expression for k can be used to expand the expression for P as

P = e−jkd = e−j ω
c

√
µrεr . (3.16)

Solving Equation 3.16 for
√

µrεr yields [67]

y =
√

µrεr =
jc ln P

ω
. (3.17)

Using Equations 3.15 and 3.17, one can write expressions for µr and εr in terms of R

and P which can be expressed using only the measured S-parameters (Equations 3.9
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and 3.12) [67].

µr = yz, εr =
y

z
(3.18)

Thus, µr and εr can be found using only the S-parameter measurements.

3.3.2 Metamaterial Constitutive Parameter Extraction. Smith et al. were

the first to use the NRW algorithm to extract constitutive parameters from metamate-

rial measurements obtained from simulations. They used reflection and transmission

coefficients (effectively S11 and S21) generated using a transfer matrix simulation on a

periodic array of wires, a periodic array of SRRs, and a periodic array of a wire-SRR

structure. The extracted constitutive parameters for these media were consistent

with Equations 3.2 and 3.3 [89]. Markoš and Soukoulis obtained similar results us-

ing simulated reflection and transmission coefficient data to obtain the constitutive

parameters of metamaterials [61].

There are some issues which must be considered when extracting constitutive

parameters from metamaterials using the NRW algorithm. Smith et al. emphasize

the process is only accurate when measuring metamaterials which do not have chiral

or bianisotropic effects [89]. A metamaterial consisting of an array of wires does

not exhibit any of these behaviors. However, as shown by Marqués et al., an array

of SRRs does exhibit bianisotropic effects [62]. This does not mean Smith et al.’s

material parameters are not accurate because their devices possessed small chiral

effects. Thus, admittedly their measurements could not be considered exact, but

they believed they were still a good estimate of the constitutive parameters [89].

Thus, when performing these types of measurements, one must have a general idea

as to the extent the material will exhibit bianisotropic behavior. If it is theoretically

believed the material will have large chiral effects, than an alternate method to extract

material parameters will be required [58]. This is due to the fact the wave number,

k, is a function of not only µ and ε but also the magnetoelectric coupling coefficients.

Hence, the NRW algorithm assumes the material being analyzed is isotropic and

homogeneous.
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Another issue encountered when extracting material parameters from S-parameter

measurements of metamaterials using the NRW algorithm has to do with the sign

choice on the square root used in the parameter extraction. To help explain, consider

an alternate form of the equations used to determine z. As noted in the previous sec-

tion, z is the normalized impedance. Equation 3.15 can be expanded and expressed

using only the S-parameter measurements.

z = ±
√

(1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

(3.19)

Note that z will have both a real and imaginary component due to the complex

nature of the S-parameter measurements. For passive materials, the real part of the

normalized impedance must be positive [22], which makes the sign choice in Equation

3.19 obvious.

The assumption of passive materials also helps in determining another sign

choice in the parameter extraction. Recall that P = e−jkd and that k = ω
√

µrµoεrεo.

The index of refraction, n can be defined as

n =
√

µrεr. (3.20)

Additionally, the free space wave number, ko is defined as

ko = ω
√

µoεo. (3.21)

Using Equations 3.20 and 3.21, the equation defining the phase advance, P , can be

rewritten as

P = e−jkond. (3.22)

Equation 3.22 can be expressed solely in terms of the S-parameter measurements.

e−jkond = X ± j
√

1−X2 (3.23)
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where

X =
1

2S21 (1− S2
11 + S2

21)
. (3.24)

The sign choice in Equation 3.22 is made knowing the imaginary part of the refractive

index for passive materials must be less than zero [89]. Solving for the real part of the

refractive index does present problems due to the multiple branches of the complex

logarithm. Specifically, when solving Equation 3.22, one gets

ln P + jm2π = −jkond, (3.25)

where the jm2π term accounts for the branch choice. Note that ln P will have both

a real and imaginary component because P is a complex quantity. Hence, this can

be rewritten as

Re [ln(P )] + jIm [ln(P )] + jm2π = −jkond. (3.26)

Solving for n yields

n =
1

kod
([−Im ln(P )]− 2mπ + jRe [ln(P )]) . (3.27)

Due to branch cuts, the real part of n is ambiguous. This ambiguity typically does

not cause problems because the thickness of a material sample is usually known. This

may not be the case for a metamaterial. Ambiguities can arise because the sample

width and the reference plane (first effective boundary) of a sample of metamaterial

are sometimes not known. The reference plane is the location after which reflected

waves from plane wave incidence exhibit plane wave behavior [22]. Additionally, the

sample width of a metamaterial may also be ambiguous due to the fact metamate-

rials may not have well defined surfaces. In [89], Smith et al. note that more than

one sample thickness must be measured in order to identify the correct branches.

Different thicknesses should result in the same material parameters; thus, the two

measurements are compared and the branch which makes the solutions identical is

chosen. The authors suggest using sample thicknesses as small as possible in order
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to make the branch cuts further apart, which will make the selection of the correct

branch easier.

Chen et al. present an improved method for choosing the correct branch cut.

They use the requirement the constitutive material parameters are continuous func-

tions of frequency [89] and use an iterative approach. They assume they have a correct

value for the refractive index at a given frequency and use a Taylor series to expand

P in Equation 3.22 at the next sampled frequency and choose the branch cut which

as close to possible enforces the continuity requirement [22].

Other authors have used the NRW algorithm to extract constitutive material

parameters from both simulated and experimental S-parameter data from metama-

terials. Ziolkowski simulated arrays of SRRs and also arrays of capacitively loaded

strips. His designs were simulated using High Frequency Structure Simulator (HFSS),

a commercial FEM-based electromagnetics software package and also using the com-

mercial FDTD package produced by Ocotillo ElectroMagnetics. He provided a slight

deviation to the extraction formulas because he noted when S11 and S21 are nearly

zero, choosing the sign of a square root becomes ambiguous. His measured results

compared favorably to experimental results, with the errors attributed to imprecision

in the manufacturing of the devices [108].

Greegor et al. simulated a standard SRR and wire configuration in the 13 - 15

GHz range using Microwave Design Studio . They used the simulated S-parameters

to determine the refractive index, n. They then manufactured the metamaterial

and obtained measurements. Values for n obtained from the simulated data were

in agreement within 20% of the values obtained using measured data [37]. Smith

et al. used the same parameter retrieval method they developed in [89] to extract

the material parameters from metamaterials whose unit cells were not homogeneous.

They simulated metal wire and SRR unit cell arrays using HFSS. They found no

changes were necessary provided the unit cells are periodic along the direction of

propagation [90].
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Chen et al. used the same NRW algorithm, although their equations were

slightly different because they interrogated the material in a waveguide using a dom-

inant TE10 mode, which changes the impedance of the medium and the resulting

equations for µr and εr developed in Section 3.3.1. They obtained S-parameter mea-

surements of an array on metamaterial unit cells with an SRR-type geometry. By

rotating the geometry of the SRRs and then performing different S-parameter mea-

surements, Chen et al. were able to extract the entire permittivity and permeability

tensors, something which had not yet been done using measured data [19].

For the work discussed in Chapter VI, the parameter retrieval method discussed

in this and the previous subsections are used. The software package to perform simu-

lated S-parameter measurements on unit cells used was Comsol Multiphysics, which

has not been cited as used for this type of work in the literature. However, at the 2008

Comsol Multiphysics conference, Urzhumov presented a detailed procedure to extract

constitutive parameters from simulated S-parameter measurements using Comsol. His

method mirrored that presented in this subsection, with the only differences being in

the implementation in the software [92]. This will be discussed further in Chapter VI

3.4 Alternate Parameter Retrieval Method

An alternate technique to extract material parameters for metamaterial unit

cells was put forth by Smith and Pendry. The process is called field averaging. The

extraction of material parameters using this method can only be accomplished from

simulations of unit cells. It is not applicable to experimental data. Fundamentally,

field averaging is a rather simple concept. It uses the basic relationship between the

electric (magnetic) field and electric (magnetic) displacement vectors. Specifically,

for materials with no magnetoelectric coupling, the relationships are

D = εo
↔
εr ·

⇀

E B = µo
↔
µr ·

⇀

H (3.28)
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A plane wave excitation in one of the unit axis directions is assumed. Additionally, the

medium is assumed to be reciprocal i.e. the constitutive parameter tensors only have

nonzero diagonal terms. It is possible to solve for the component values (εx, εy, εz,

µx, µy, µz) by using the simulated values for all field components and performing a

simple division. As an example, for a plane wave excitation that has only an x̂-directed

electric field, εx = Dx

Ex
.

In a metamaterial unit cell simulation, the field values are known at all points

in the geometric grid used to model the material. Obviously one cannot simply

perform this division at each location in the grid because the goal is to define bulk

material parameters. Thus, Smith and Pendry define field averages along the various

faces and edges of the unit cells, which are then used as the bulk values to calculate

the permittivity and permeability tensors [91]. Simulations of various metamaterial

cell geometries were performed and material parameters extracted. Results closely

matched those obtained using the NRW retrieval techniques previously discussed. It

was noted during the analysis the extracted parameters exhibited a spatial dispersion.

If the unit cells were filled with nothing i.e. a metamaterial composed solely of free

space, the extracted material parameters were µo and εo but multiplied by a sin(x)
x

-

type term. Thus, the spatial dispersion in the parameters was determined to be a

function of the simulation. Fortunately, it appears the dispersion can be eliminated

simply by scaling by the sin(x)
x

term [91]. The advantage of parameter extraction using

field averaging is there are no decisions required in terms of signs on square roots

or on logarithm branches. The disadvantage is, although quite simple in concept,

implementation is fairly complex and computationally expensive. There are other

approaches similar to field averaging, such as field summation that are conceptually

similar, the exception being how the bulk field values are computed [57].

3.5 Tunable Metamaterials

As discussed in Sections 3.1 and 3.2, it is possible to create metamaterials with

specific electric and magnetic properties. However, once the devices are created, the
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resonant frequencies are fixed. There has been research into unique ways to alter the

resonant frequency of general SRR-structures following fabrication of the devices.

Aydin and Ozbay manufactured SRRs, similar to the one showed in Figure 3.4,

and altered the SRR’s capacitance by mounting capacitors between various aspects

of the SRR. This is shown in Figure 3.9. Note how the capacitors are mounted both

Figure 3.9: SRR devices with capacitors mounted post-fabrication [11]

between the gaps in each of the rings and also between the inner and outer rings

themselves. The mounted capacitor obviously changed the overall capacitance of the

cell, which would down shift the magnetic plasma frequency (ωpm in Equation 3.3).

Aydin and Ozbay proved the change in frequency by measuring the S-parameters

of the device before and after capacitor mounting [11]. As expected, when different

capacitor values were used, different magnitudes of frequency shift were observed.

Shadrivov et al. did similar work, except instead of mounting a standard capac-

itor between the gaps or rings of a standard SRR, they mounted a variable-capacitor-

diode, whose capacitance can be controlled by applying a DC bias voltage. Their

device is shown in Figure 3.10. By varying the voltage from -1 to 1 volt, they were

able to achieve a tuning range of 630 MHz [82]. Similar work was done by Gil et al.

who mounted a varactor onto a SRR and achieved approximately 500 MHz of tuning

capability [36]. Hand and Cummer also tuned the resonant frequency of an SRR, but

they used a microelectromechanical systems (MEMS) switch to alter the capacitance

of the structure. Unlike Gil et al. and Shadrivov et al., Hand and Cummer did not

obtain a tuned range of operating frequencies. Rather, turning the switch on or off

created two different resonant frequencies approximately 800 MHz apart [38].
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Figure 3.10: Variable-capacitor-diode mounted on an SRR device [82]

Degiron et al. performed conceptually similar experiments in that their desire

was to control the magnetic resonance of an SRR-type structure. However, their

approach was rather unique. They used a single gapped ring of copper (in essence,

only one of the rings of an edge-coupled SRR) and placed a piece of n-type silicon in

the gap. This is shown in Figure 3.11. An 815 nm laser was used to illuminate the

Figure 3.11: N-type silicon in SRR gap

silicon at intensity levels from 0 - 5 mW. S-parameter measurements were taken, with

the primary focus being on the S21 i.e. transmission parameter. As the intensity of

the illumination increased, the conductivity of the silicon increased, thereby shorting

out the ring and removing the resonance, which manifested itself as an increase in the

S21 measurement. Degiron et al. also found controlling the gap between the silicon

and the edge of the rings had an effect on the resonant frequency of the device [29].
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Finally, Rederus used a variable capacitive MEMS device mounted in gap in an

SRR. The MEMS device consisted of cantilevered beams that, when activated, would

alter the capacitance of the SRR, thus changing the resonant frequency [75]. The

main advantage of Rederus’s design was his device was fabricated in-situ with the

SRR, resulting in a much cleaner device than those fabricated by Aydin and Ozbay

and Shadrivov et al. Due to technical issues, S-parameter measurements were not

taken, but it was shown the activated MEMS device could add 0.54 - 0.62 pF of

capacitance to the SRR.

3.6 Summary

This chapter presented various unit cell structures which have been used to

create effective bulk permittivity and/or permeability effects in man-made materials.

The NRW algorithm, which can be used to extract the material parameters from some

geometries, was documented with its limitations and ambiguities when measuring

metamaterials were delineated.

55



IV. Improved Simplified Parameters for Two-Dimensional

Cylindrical Cloaks

In Section 2.2, it was shown Schurig et al. made an error when deriving the wave

equation for a TMZ electromagnetic field in an anisotropic cloak. Their error was

assuming µθ was constant [101]. However, as clearly seen in Equation 1.21, the ideal

value for µθ is not spatially invariant. Thus, the simplified parameter sets developed,

while shown to work reasonably well, were not correctly obtained. In this chapter,

all constraint equations for the material parameters of an ideal cylindrical cloak are

derived using the correct form of the wave equation. Using these constraint equations,

it is first shown how varying µθ can control the amount of field transmitted into the

cloak’s hidden region. It is then shown how all constraint equations can be used to

derive simplified material parameter sets whose complexity can be tailored depending

on the available manufacturing capabilities of metamaterials.

4.1 Constraint Equations

In order to develop all the constraint equations on the material properties of

an ideal cylindrical cloak, the correct wave equation must first be derived. Since it is

known a priori the ideal parameters are θ-invariant but not r-invariant, the general

wave equation for TMz fields in anisotropic media shown in Equation 2.6 can be

expanded analytically to

1

εzµθ

∂2Ez

∂r2
+

[
1

εzµθ

1

r
− µ′θ

εzµ2
θ

]
∂Ez

∂r
+

1

εzµr

1

r2

∂2Ez

∂θ2
+ k2

oEz = 0. (4.1)

Note ′ implies differentiation with respect to r. This analysis can be extended to TEz

fields by letting

Ez → Hz, εz → µz, µθ → εθ, µr → εr. (4.2)
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Recall the ideal parameters for an ideal cylindrical cloak for TMz incident fields

are

µr =
r − a

r
, µθ =

r

r − a
, εz =

(
r − a

r

) (
b

b− a

)2

. (4.3)

When one uses the ideal cylindrical cloak’s material parameters shown in Equation 4.3

in the general wave equation shown in Equation 4.1, the result is the wave equation

for TMz fields in an ideal cylindrical cloak.

(
b− a

b

)2
∂2Ez

∂r2
+

(
b− a

b

)2
1

r − a

∂Ez

∂r
+

(
b− a

b

)2 (
1

r − a

)2
∂2Ez

∂θ2
+k2

oEz = 0 (4.4)

As discussed in Section 2.2, the original simplified material parameters for cylindrical

cloaks for TMZ incident field are

µr =

(
r − a

r

)2

, µθ = 1, εz =

(
b

b− a

)2

. (4.5)

The material parameters shown in Equation 4.5 were initially thought to satisfy the

same wave equation as the ideal parameter set. However, Yan et al. showed the

procedure leading to this conclusion was questionable by proving the simplified and

ideal parameter sets satisfy different wave equations [101]. This is explicitly seen by

substituting the simplified material parameters shown in Equation 4.5 into Equation

4.1. The resulting wave equation is shown below.

(
b− a

b

)2
∂2Ez

∂r2
+

(
b− a

b

)2
1

r

∂Ez

∂r
+

(
b− a

b

)2 (
1

r − a

)2
∂2Ez

∂θ2
+ k2

oEz = 0 (4.6)

Note the subtle difference in Equation 4.6 compared to Equation 4.4. The wave

equation using the original simplified parameters has a 1/r factor in front of the

∂Ez/∂r term. The wave equation using the ideal parameters has a factor of 1/(r−a)

for this same term. Thus, for values such that r À a, the field behavior of the two

cloaks will be similar [101], but they certainly do not satisfy the same wave equation.

Since the ideal cylindrical cloak effectively guides electromagnetic energy around the

hidden region, it makes sense that a simplified cloak, whose wave equation differs from
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that of the ideal cloak, has energy transmitted into this same region [101]. It also

makes sense that, because the wave equations are similar for the region away from

r = a, the simplified parameter set performed reasonably well in terms of cloaking

capability.

By comparing Equations 4.1 and 4.4, one finds the cylindrical cloak’s constitu-

tive parameters must meet the following conditions in order to achieve ideal cloaking

for TMz fields [63].

1

εzµθ

=

(
b− a

b

)2

(4.7)

1

εzµr

=

(
b− a

b

)2 (
r

r − a

)2

(4.8)

1

εzµθ

1

r
− µ′θ

εzµ2
θ

=
1

r − a

(
b− a

b

)2

(4.9)

The third constraint equation given in Equation 4.9 had not appeared in the literature

prior to this research and forms the basis for the alternative simplified parameters

proposed later in this chapter.

The ideal cylindrical cloak also has an impedance at the outer boundary, r = b,

that matches free space.

Zideal =

√
µθ

εz

∣∣∣∣
r=b

= 1 (4.10)

The simplified parameters shown in Equation 4.5 satisfy Equations 4.7 and 4.8

but do not satisfy Equation 4.9. Additionally, the impedance mismatch at r = b

for the cylindrical cloak with the same simplified constitutive parameters and using

a = λ and b = 2λ is

Zsimp =

√
µθ

εz

∣∣∣∣
r=b

= 0.5 (4.11)

Obviously, there will be a scattered field from the simplified cylindrical cloak with

an object in its hidden region. However, what is the dominant factor in the scat-

tered field? Is it the impedance mismatch at r = b, or is it due to a scattered field

resulting from the incident field being transmitted into the hidden region and being
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reflected by the hidden object? This question motivated the investigation discussed

in the following paragraphs. Initially, this work attempted to minimize the energy

transmitted into the hidden region. It was theorized less energy transmitted into

the hidden region would result in less energy that can be scattered by the cloaked

object, possibly resulting in a smaller total scattered field. The constraints on the

cylindrical cloak’s ideal constitutive parameters defined in Equations 4.7 - 4.9 were

used to define parameter sets in order to control the amount of energy transmitted

into the cloak’s hidden region. The cloaks’ effectiveness was then analyzed in terms

of the amount of energy in the hidden region and of the overall scattering width of

the cloaking structure.

Simulations using Comsol Multiphysics were performed on the original simpli-

fied cylindrical cloak (Equation 4.5). These were performed with a PEC cylinder

with radius r = a and a square PEC with side length a separately in the cloak’s hid-

den region. These objects were chosen because the intent was to show objects with

different scattering properties placed in the hidden region impact the cloak’s overall

scattered field. Since the simulation wavelength is λ = a, the objects placed in the

hidden region are on the order of one wavelength in size. The chosen objects have

significantly different shapes and areas; thus, the overall scattered fields should differ

due to field penetration into the hidden region. Additionally, a simulation was done

with no objects in the hidden region. All simulation results are shown in Figure 4.1.

Note the fields in the hidden region for the empty cloak, an expected result based

on the work done in [101]. Based on these images, it is difficult to fully comprehend

the size and pattern of the scattered field for each geometry. Therefore, the Comsol

simulation results were transformed to a far zone two-dimensional scattering width.

The scattering width for each geometry is plotted as a function of θ in Figure 4.2 (θ is

the bistatic angle with θ = 0o being the forward scatter direction). Every scattering

width plot in this section is normalized by the maximum scattering width value for

an uncloaked PEC cylinder of radius a.
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Figure 4.1: Scattered electric field magnitudes for a simplified cylindrical cloak
that has (a) nothing, (b) a PEC cylinder with radius a, and (c) a square PEC of side
length a in the hidden region.

0 20 40 60 80 100 120 140 160 180
−60

−50

−40

−30

−20

−10

0

θ

N
or

m
al

iz
ed

 S
ca

tte
rin

g 
W

id
th

 in
 d

B

 

 

Uncloaked PEC
Cloak With Empty Hidden Region
PEC Cylinder in Hidden Region
Square PEC in Hidden Region

Figure 4.2: Normalized scattering width for a simplified cloak with various hidden
objects.

Note the cloaked PEC cylinder (red line in Figure 4.2) does have a smaller

scattering width than an uncloaked PEC cylinder (blue line). Also note the variation

in the scattering widths between the cloaked cylinder and square (black line). This

variation is due to different objects being placed in the hidden region. To better

see how the scattering width is changed when different objects are inserted into the

hidden region, the difference between the scattering widths of a cloaked PEC cylinder

and cloaked PEC square were plotted. The results are shown in Figure 4.3. Obviously,

changing the object in the hidden region has an impact on the overall scattered field

for this set of constitutive parameters. The question is, will minimizing the field

transmitted into the hidden region reduce the overall scattered field variations caused

by the different hidden objects?
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Figure 4.3: Scattering width difference for a simplified cloak with a PEC cylinder
and a PEC square in the hidden region.

As discussed in Section 2.2, there have been suggested improvements to the

original simplified constitutive parameters [14,101]. The improved set of constitutive

parameters for TMz incident fields put forth in [102] are shown in Equation 4.12.

µr =

(
r − a

r

)2
b

b− a
, µθ =

b

b− a
, εz =

b

b− a
. (4.12)

The improved parameter set was developed with the goal of reducing the overall

scattering width of the cloaking structure by matching the cloak’s impedance to free

space at r = b while still satisfying the requirements shown in Equations 4.7 and 4.8.

As with the initial simplified parameters, the improved set does not satisfy the third

constraint equation shown in Equation 4.9. Comsol simulations of a cylindrical cloak

with the constitutive parameters shown in Equation 4.12 were performed. The cloak

was simulated with no object in the hidden region, and with a PEC cylinder of radius

a and a square PEC with side length a separately in the hidden region. The results

are shown in Figure 4.4. It is obvious the scattered field magnitudes in the region

r > b are larger for the two cloaks with objects in the hidden region. To better show

this, the scattered field results were transformed to the far zone. These results are

shown in Figure 4.5. The goal of reducing the overall scattering width from a cloak

with simplified parameters was achieved using the constitutive parameters shown in

Equation 4.12. This is due to the matched impedance at r = b. However, notice

how the scattered fields have a greater change in magnitude when the objects in the
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Figure 4.4: Scattered electric field magnitude for an improved cylindrical cloak that
has (a) nothing, (b) PEC cylinder of radius a, and (c) square PEC of side length a
in the hidden region.
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Figure 4.5: Normalized scattering widths from an improved simplified cloak.

hidden region are changed. As before, this can seen by comparing the difference

in the scattering widths for the cloaked PEC cylinder (red line in Figure 4.5) and

the cloaked square PEC (black line). This is shown in Figure 4.6. The average

difference in scattering width for a simplified cylindrical cloak with the parameters

shown in Equation 4.5 having a PEC cylinder and square in the hidden region was

1.77 dB. The average difference in scattering width for the improved cylindrical cloak

with the parameters shown in Equation 4.12 was 2.90 dB. Therefore, even though

overall scattering width has been reduced (due to the matched impedance at r = b),

the larger variation in the scattered fields when different objects were placed in the

hidden region suggests more energy is being transmitted into the hidden region of the

cloak with the improved constitutive parameters than the hidden region for the cloak

with the original simplified parameters. This implies a matched impedance at r = b is
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Figure 4.6: Scattering width difference for an improved simplified cloak with a PEC
cylinder and a square PEC in the hidden region.

more important for signature width reduction than minimizing the field transmitted

into the hidden region. This is further tested in the next section. It will be shown

for these two cloaks that the value of µθ determines the size of the field transmitted

into the hidden region.

4.2 Reducing field transmission into the hidden region

As previously mentioned, the constitutive parameters of an ideal cloak for TMz

incident waves must satisfy the constraints shown in Equations 4.7 - 4.9. The sim-

plified cloaks in the literature focus on satisfying Equations 4.7 and 4.8. Equation

4.9 has never before been discussed, likely due to the assumptions used when the

initial set of simplified parameters was put forth. In what follows, the importance

of Equation 4.9 is analyzed in terms of overall scattering width and of how well the

hidden region is shielded from incident energy.

If one first assumes a cloak’s constitutive parameters satisfy Equations 4.7 and

4.8, Equation 4.9 can be written in a more compact form. This is shown in Equation

4.13.

µ′θ + µθ
a

r (r − a)
= 0 (4.13)

Note that a < r ≤ b. The analysis is initially confined to cloaks with a constant

value for µθ (i.e. µ′θ = 0). This means the smaller µθ, the less error there will be for

any value of r when trying to satisfy Equation 4.13. The left-hand side of Equation
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4.13 can be calculated using the values for µθ for the initial simplified parameter

set (µθ = 1) and the improved parameter set (µθ = b
b−a

). These are plotted as a

function of r in Figure 4.7. For this plot, a = 1 and b = 2. Two additional plots

are shown in this graph, and these will be discussed later. Since the ideal value for
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Figure 4.7: The calculated values for the left-hand side of Equation 4.13 using non-

ideal values for µθ. Values for µθ are 1 (red line), b
b−a

(green line), b−a
b

(cyan line),

and
(

b−a
b

)3
(black line).

Equation 4.13 is zero for all values of r. A larger calculated value for the left-hand

side of Equation 4.13 using a non-ideal value for µθ means a larger deviation in the

material parameter from that of the ideal cloak. Based on this graph, one would

expect to find the field transmitted into the hidden region for the cloak with the

initial simplified parameter set (µθ = 1) to be less than the hidden region field for

the improved parameter set (µθ = b
b−a

). This is due to the fact the value for µθ for

the initial parameter set results in a smaller error in Equation 4.13 than the value for

µθ in the improved parameter set. Hence, changing objects in the hidden region for

the cloak with the original simplified parameters (Figure 4.1) would have less impact

on the overall scattered field than changing objects in the hidden region of a cloak

with the improved parameters (Figure 4.4). This is precisely what we have shown in

Figures 4.3 and 4.6.

Other parameter sets can satisfy Equations 4.7 and 4.8 but also further reduce

the deviation from Equation 4.13, resulting in a reduction in the field transmitted into

the hidden region. The parameter sets shown in Equations 4.14 and 4.15 meet these
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conditions. Their deviations from the ideal value of Equation 4.13 were calculated.

The results are plotted in Figure 4.7.

µr =

(
r − a

r

)2
b− a

b
, µθ =

b− a

b
, εz =

(
b

b− a

)3

. (4.14)

µr =

(
r − a

r

)2 (
b− a

b

)3

, µθ =

(
b− a

b

)3

, εz =

(
b

b− a

)5

. (4.15)

Obviously no attempt was made to match impedances at the r = b interface for

the parameter sets shown in Equations 4.14 and 4.15, as the goal was to show a

reduction in the field transmitted into the hidden region. The cloaks were simulated

with material parameters shown in Equations 4.14 and 4.15 with a PEC cylinder

of radius a and with a square PEC with side length a in the hidden region. The

difference in scattering widths are plotted for each of these cloaks. The results are

shown in Figures 4.8 and 4.9. As expected, the average difference in scattering width
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Figure 4.8: Scattering width difference for a cloak with parameters shown in Equa-
tion 4.14 with a PEC cylinder and square in the hidden region.

is decreased when µθ = b−a
b

and µθ =
(

b−a
b

)3
respectively, leading to the conclusion

that the field transmitted into the hidden region is being reduced as µθ is decreased.

To further show how Equation 4.13 determines the amount of energy trans-

mitted into a simplified cylindrical cloak’s hidden region, cloaks with the material

parameters shown in Equations 4.5, 4.12, 4.14, and 4.15 were simulated. No objects

were placed in their hidden regions, and the total electric field magnitudes in the hid-

den regions for each cloak are plotted in Figure 4.10. The images in Figure 4.10 clearly
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Figure 4.9: Scattering width difference for a cloak with parameters shown in Equa-
tion 4.15 with a PEC cylinder and square in the hidden region.

Table 4.1: Hidden Region Total Energy and Impedance for Different Cloaks
µθ Total Energy Z|r=b
b

b−a
2.76 pJ 1

1 2.24 pJ 0.5
b−a

b
1.35 pJ 0.25(

b
b−a

)3
0.42 pJ 0.0625

show as the cloak takes on values of µθ which make the left-hand side of Equation 4.13

closer to zero for all values of r, there is less field transmitted into the hidden region.

As additional proof, the energy density in the hidden region can be integrated to

determine the regions’ total energies. These results are shown in Table 4.1. Note the

cloak with material parameters shown in Equation 4.15 has the smallest total energy

in the hidden region. Therefore it is the best of the four cloaks considered at shield-

ing the hidden region. However, there is a price to pay for this improved shielding

performance. Table 4.1 also shows the impedance for each cloak at r = b. The cloak

with the best shielding of the hidden region also has the worst impedance mismatch

at the cloak outer boundary. As demonstrated earlier, an impedance mismatch at the

boundary results in the cloaking body having a significant scattered field. Therefore,

to compare performance in terms of scattering width reduction, scattering widths

were plotted for all cloaks with a PEC cylinder of radius a in the hidden region.

This is shown in Figure 4.11. The blue line is the normalized scattering width for

an uncloaked PEC, the red line is the normalized scattering width for cloak with
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Figure 4.10: Electric field magnitude in the hidden region for cloaks with material
parameters defined by (a) Equation 4.12, (b) Equation 4.5, (c) Equation 4.14, and
(d) Equation 4.15.

the simplified parameter set (Equation 4.5), the green line is the scattering width for

a cloak with the improved parameter set (Equation 4.12), and the cyan and black

lines are the scattering widths for cloaks with parameter sets shown in Equations

4.14 and 4.15 respectively. By altering the material parameters such that less fields

are transmitted into the hidden region, the change in impedance at r = b dramat-

ically increases the overall scattering width of the cloaking structure. Obviously if

scattering width reduction is the goal, use of the improved simplified parameter set

(Equation 4.12, [102]) is the best option as its scattering width is significantly less

than an uncloaked PEC cylinder. The two new cloaks actually have larger scattering

widths at various observation angles than the uncloaked PEC, making them a bad

choice if signature reduction is desired. However, if one is attempting to simply shield

an object from incident radiation, then the use of Equation 4.9 becomes important

in that parameters should be chosen such that the deviation from this equation is

minimized. One may say shielding can easily be accomplished using a PEC; why use

a modified cloak for such a task? A PEC does act as a suitable barrier for a large
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Figure 4.11: Scattering widths for cloaks with a PEC cylinder of radius a in the
hidden region.

bandwidth of electromagnetic radiation. However, at extremely low frequencies, skin

depths must be considered. It might be less costly, in terms of weight or size, to use

a designed cloak for such a shielding application.

It has been shown that, in terms of overall signature reduction, the cloak put

forth in [102] is the best option, and that this particular cloak satisfies Equations

4.7 and 4.8 and has a matched impedance at r = b. However, note the significant

variation in the scattered field when different objects are placed in this cloak’s hidden

region. Is it possible to reduce this variation in the scattered field with different

objects in the hidden region while maintaining the overall reduction in scattering

width?

There are four parameters that must be met for a cylindrical cloak to be perfect:

Equations 4.7, 4.8, and 4.9 must be satisfied, and the cloak must have a matched

impedance at r = b. To this point, simplified cloaks that satisfy Equations 4.7 and

4.8, and that either do or do not have a matched impedance at r = b have been

analyzed. The results showed the cloak with the matched impedance results in the

best improvement in scattering width even though this cloak has the largest field

transmitted into its hidden region.

Now, consider a cloak with material parameters shown in Equation 4.16.

µr = 0.5, µθ =
r

r − a
, εz =

r − a

r

(
b

b− a

)2

. (4.16)
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Like the improved parameter set put forth in [102], these parameters satisfy three of

the four requirements. The difference is these parameters satisfy Equations 4.7 and

4.9 while having a matched impedance at r = b. Equation 4.8 is not satisfied.

As done previously, a cloak having the constitutive parameters shown in Equa-

tion 4.16 was simulated with a PEC cylinder of radius a and a square PEC of side

length a separately in the hidden region were simulated. The scattered field results

are shown in Figure 4.12. Note how the scattered fields for all three images shown in

Figure 4.12: Scattered electric field magnitude for a cylindrical cloak with param-
eters shown in Equation 4.16 that has (a) nothing, (b) PEC cylinder, and (c) square
PEC in the hidden region.

Figure 4.12 appear very similar. This suggests different objects in the hidden region

have little effect on the scattered field. This can seen more clearly by transforming

the scattered fields to the far zone. This is shown in Figure 4.13. The blue line is
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Figure 4.13: Normalized scattering width from cloak defined by Equation 4.16.

the scattering width for an uncloaked PEC, the red and green lines are the scattering
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widths for the improved cloak with a PEC cylinder and square PEC in the hidden re-

gion. The cyan and black lines are the same but for a cloak with material parameters

shown in Equation 4.16. The graphs in Figure 4.13 clearly show there is no difference

in the scattering width when different objects are placed in the hidden region of the

cloak with parameters put forth in Equation 4.16. Note the cyan and black lines lie

virtually on top of the other. In fact, the average difference in the scattering widths

is 0.0671 dB. This is because the total field in the hidden region is negligible. The

field in the hidden region is negligible because the impedance at r = a → ∞, which

means no energy will be transmitted.

Figure 4.13 shows scattering width results for a cloak using the parameters

shown in Equation 4.12. This is done to compare the performance of the cloaks

in terms of scattering width. Obviously, the red and green lines are more desirable

results because of the smaller scattering width values. However, this cloak’s scattering

widths vary more as a function of different objects in its hidden region. If various

objects are going to be hidden and observation angles are in the specular region, the

top cloak may be a better option. Of course, the cloak with parameters put forth

in Equation 4.16 has two radially varying parameters, meaning it is currently more

difficult to manufacture.

Thus far, cylindrical cloaks that satisfy the ideal values for εzµθ and εzµr have

been analyzed. It has been shown deviations from a third constraint equation shown

in Equation 4.9 resulted in larger fields being transmitted into a cylindrical cloak’s

hidden region. As the cloak’s constitutive parameters were changed such that this

new constraint was better satisfied, the amount of energy transmitted into the hidden

region was shown to be reduced. However, the resulting impedance mismatch at r = b

due to changing the constitutive parameters resulted in a significant scattered field.

Thus, despite reducing energy transmitted into the hidden region, which resulted in

a reduction in the scattered field by the cloaked object, the cloak itself was creating

a large scattered field. Hence, in terms of overall scattering width, having a matched
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impedance at r = b seems to be more important than reducing the transmitted energy

into the hidden region.

A particular cylindrical cloak that satisfied the specific values for εzµθ and µ′θ

while having a matched impedance at r = b has also been analyzed. For observation

angles in the backscatter region, this cloak to performed quite well in terms of scat-

tering width as the scattered field was independent of objects placed in the hidden

region. While scattering width performance was not on the same level as the cloak

with parameters put forth in [102], the independence of the scattered field due to

different objects in the hidden region is noteworthy.

4.3 Improved Cylindrical Cloak Parameters

As discussed in Section 2.2, simplified parameter sets are necessary in order to

make cloaks more manufacturable. Due to a derivation error in one of the first papers

on simplified cloaks, most simplified parameter sets have focused on the material

parameters satisfying Equations 4.7 and 4.8 only. As shown in Section 4.1, a third

equation (Equation 4.9) is required in order to fully constrain the material parameters.

Recall also from Section 4.1 that if Equation 4.7 is assumed true for a given material

parameter set, Equation 4.9 can be rewritten as

µ′θ + µθ
a

r (r − a)
= 0. (4.17)

Equation 4.17 is only a function of the r-varying parameter, µθ, and its first derivative,

µ′θ. The solution to this first order differential equation is given by

µθ(r) = C
r

r − a
. (4.18)

Note C is a constant. Initially C is assumed to be unity as this corresponds to a first

order transformation, as will be discussed below. Obviously, Equation 4.18 matches

the form of µθ shown in Equation 1.21. What may not be as obvious is the fact that
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Table 4.2: Simplified material parameter values for N = 0, 1, and 2.
N µθ µr εz

0 b
b−a

b
b−a

(
r−a

r

)2 b
b−a

1 b2−ar
(b−a)2

b2−ar
(b−a)2

(
r−a

r

)2 b2

b2−ar

2 b3−3arb+a2r+ar2

(b−a)3
b3−3arb+a2r+ar2

(b−a)3

(
r−a

r

)2 b2(b−a)
b3−3arb+a2r+ar2

the ideal value of εzµθ is inherently satisfied in Equation 4.17. Thus, to develop a

simplified parameter set, one should first obtain an approximate value for µθ that is as

close as possible to the solution to Equation 4.17. To obtain values for µθ that better

approximate the ideal value, the solution of the differential equation for µθ can be

expanded using a Taylor series about the point r = b [26]. Approximations are then

made by limiting N in the Taylor series. Thus, the expression for the approximation

of µθ is

µθ(r) ∼=
N∑

n=0

µn
θ (b)

n!
(r − b)n , (4.19)

where µn
θ (b) is the nth derivative of µθ(r) evaluated at r = b. Once the expression

for the approximation to µθ is determined, values for µr and εz are found using

the remaining constraints defined in Equations 4.7 and 4.8. Since the expansion is

performed about the point r = b, the impedance at r = b is matched to that of free

space. The calculated material parameters using the first term (N = 0), the first two

terms (N = 1), and the first three terms (N = 2) to estimate µθ are shown in Table

4.2. For N = 0, µθ = b
b−a

. Consequently, the material values are those of the improved

cloak discussed in Section 2.2 and originally put forth in [102]. This explains why

the improved cloak was shown to be more effective than the quadratic and original

simplified cloaks. Note also that while these expressions may seem complicated, the

material parameters themselves are quite well behaved. This is shown in Figure 4.14.

As additional terms are included in the Taylor series, µθ and εz become more varying

with respect to r; they also take on more extreme values at r = a. Hence these

parameter sets can be used based on the ability to manufacture metamaterials with
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Figure 4.14: Parameter variation as a function of r. In both figures, the ◦-line is
µθ, the ∆-line is µr, and the ¤-line is εz. In the top figure µθ is approximated using
N = 1; in the bottom figure, N = 10.

various properties. If larger values of µθ are attainable, simply let N increase to define

a new parameter set.

The analysis up to this point has assumed a first-order transformation as shown

in Equation 1.7. It can be expanded to include all transformation orders. As an

example, an nth-order coordinate transformation that maps the region r′ < b to the

region a < r < b has the form

r =

(
1

bn−1
− a

bn

)
r′n + a. (4.20)

The material parameters for a TMz electromagnetic field can be found using the

method in [72] and are shown below.

µr = n
r − a

r
, µθ =

1

n

r

r − a
, εz =

(r − a)
2
n
−1

rn

b2

(b− a)
2
n

. (4.21)

As done above, the ideal material parameters shown in Equation 4.21 can be substi-

tuted into the general wave equation shown in Equation 4.1 in order to obtain the
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constraints on the material parameters.

1

εzµθ

=
(b− a)

2
n

b2

n2

(r − a)
2
n
−2

(4.22)

1

εzµr

=
(b− a)

2
n

b2

r2

(r − a)
2
n

(4.23)

1

εzµθ

1

r
− µ′θ

εzµ2
θ

=
(b− a)

2
n

b2

n2

(r − a)
2
n
−2

[
1

r
+

a

r (r − a)

]
(4.24)

As before, Equation 4.24 can be simplified if Equations 4.22 is assumed to be true.

The result is

µ′θ + µθ
a

r (r − a)
= 0, (4.25)

which is identical to Equation 4.13. Hence, the choice of C in Equation 4.18 is

important because C = 1
n

where n is the transformation order. If C 6= 1, then one

cannot use Equations 4.7 and 4.8 when solving for εz and µr. Rather, Equations 4.23

and 4.24 must be used to get the proper approximations for the material parameters.

In the next section, the performance of cloaks where µθ is approximated using

different values of N in the Taylor series are compared.

4.4 Analysis of Cloak Performance

The Comsol Multiphysics software package was used to perform all simulations.

Cylindrical cloaks whose material parameters were found using the process described

in Section 4.3 using a linear transformation were simulated. The cloaks’ inner bound-

aries were lined with a PEC and an incident wavelength (λ) of one meter traveling in

the positive x̂ direction was used. The cloak parameters, a and b, were defined such

that a = λ and b = 2λ. The impact on the results when a and b were varied is dis-

cussed later. Simulation results for the improved cloak and that of a cloak with a 10,

50, and 100-term Taylor series approximations for µθ are shown in Figure 4.15. Note

all cloaks in Figure 4.15 show good cloaking performance. However, it is difficult to
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Figure 4.15: Real part of the ẑ-component of the total electric field for cloaks with
material parameters defined as (a) the improved cloak, while (b), (c), and (d) are
cloaks where µθ is approximated using a 10, 50, and 100-term Taylor series.

determine which cloak has the best performance. Therefore, only the scattered field

outside of the cloaks for each configuration were plotted. These results are shown

in Figure 4.16. Figure 4.17 shows the scattered fields from cloaks with the same

configurations except that a second order transformation was used when developing

the ideal parameter values. Based on the analysis in Section 4.3, the improved cloak

should have the largest scattered field while the cloak where µθ is approximated using

a 100-term Taylor series should have the smallest scattered field for all transformation

orders. This is clearly evident in both figures, particularly when one compares the

forward scattered fields.

Based on these results, one can conclude the process discussed in Section 4.3

results in material parameter sets that result in better cloak performance as the num-

ber of terms in the Taylor series is increased for all transformation orders. However,

in order to better classify cloak performance, the near-field results were transformed

to the far-field in order to determine each cloak’s two-dimensional scattering width.
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Figure 4.16: Real part of the ẑ-component of the scattered electric field for cloaks
with material parameters defined as (a) the improved cloak, while (b), (c), and (d)
are cloaks where µθ is approximated using a 10, 50, and 100-term Taylor series.

In order to compare the cloak’s scattering width reduction capabilities, a met-

ric must be established. First the best reduction in scattering width numerically

possible was determined. This occurs when an ideal cylindrical cloak is used, theo-

retically resulting in no scattered field. However, due to numerical issues, there is a

residual scattered field. Specifically, the finite element method approximates the field

behavior with piecewise continuous elements. Therefore this discretization limits the

accuracy of the field representation, particularly near r = a where the cloak has pa-

rameter values equal to zero or infinity. Approximations must be made because these

values cannot be simulated due to resulting singularities in the differential equation.

As stated in Section 4.3, analysis has shown even slight deviations from the ideal

material parameters result in degraded cloak performance [42, 77]. To illustrate this

degradation, the scattering width for a simulation with no scattering objects in the

domain was plotted and compared to the results for an ideally cloaked PEC cylinder.

The results are shown in Figure 4.18. Note all plots are normalized by the maxi-

mum scattered field magnitude for the uncloaked PEC cylinder. The ideal cloak does
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Figure 4.17: Real part of the ẑ-component of the scattered electric field for cloaks
with material parameters derived using a second order transformation. Images (a),
(b), (c), and (d) are cloaks where µθ is approximated using a 1, 10, 50, and 100-term
Taylor series.

significantly reduce the scattering width of the uncloaked PEC cylinder. However,

one would expect the results to be on the order of the scattered field from an empty

domain. Clearly, they are not even close to this result due to the aforementioned

approximations.

The simulation can be improved by controlling the size of the mesh elements

particularly near the region r = a. A new simulation domain was constructed by

creating a subdomain around r = a of extremely small elements. This increased the

resolution with regard to the singular parameter values. The final mesh resulted in

approximately 1,500,000 degrees of freedom. At this discretization, the ideal results

were -30 dB down from the uncloaked cylinder. Further improvements required sig-

nificant computation times and would not further aid in the performance analysis as

each cloak design is affected equally. Therefore -30 dB is considered to be the ideal

solution for comparison purposes.
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Figure 4.18: Scattering widths for an uncloaked PEC cylinder (◦-line), ideally
cloaked PEC cylinder (¦-line), and an empty domain (M-line).

The performance of the improved cloak was compared to cloaks whose mate-

rial parameters were found using the process described in Section 4.3. Results for

the improved cloak and that of a cloak with a 10, 50, and 100-term Taylor series

approximations to µθ are shown in Figure 4.19. Note even the 10-term Taylor series

approximation results in a three dB scattering width improvement in the region near

θ = 0o compared to the improved cloak. Also note the scattering width gets better

as more terms in the Taylor series are used, which is expected since the material

parameters become the ideal ones as N →∞.

In the backscattering region (θ = 180o), improvement towards the ideal solution

is extremely slow due to the large slope in the ideal value for µθ as r → a. The Taylor

series requires more terms in order to accurately represent µθ in this area. It is also

interesting to note these new material parameters, although all are spatially varying,

are very manufacturable. For example, at r = a, µθ = 11 and εz = 0.3636 for the

10-term approximation. As the number of terms increases, the values become harder

and harder to obtain from a manufacturing perspective (µθ = 51 and εz = 0.0784 for

50-term approximation, µθ = 101 and εz = 0.0396 for the 100-term approximation).

However, as advances in material manufacturing technology continue, these values are
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Figure 4.19: Scattering widths for an uncloaked PEC cylinder (◦-line), and cloaked
PEC cylinders using the ideal cloak (M-line), the improved cloak (¤-line), and 10, 50,
and 100 term approximations for µθ (¦, ?, and O-lines).

becoming more approachable. Note similar results are obtained for far field patterns

when a second order coordinate transformation is used.

As stated above, all simulations were performed with λ = 1 meter with the cloak

inner and outer boundaries located at a = λ and b = 2λ respectively. It was shown

in [102] the improved cloak is relatively immune to changes in cloak thickness. As

shown in Section 4.3, the improved cloak parameters can be derived using the Taylor

series expansion method by letting N = 0. The material parameter sets developed

in this section are refinements to the improved cloak and are derived by increasing

N in the Taylor series. Therefore, these new material parameter sets should also be

relatively immune to changes in b. A number of simulations were performed with b

varying from 1.5λ to 4.5λ. In all simulations, the results were similar to those shown

in Figure 4.19. Scattering width results for the geometry when b = 4.5λ are shown

in Figure 4.20. Note there is a slight degradation in performance as b is increased.

When b = 2λ, the scattering width at θ = 0o was -16 dB. When b is increased to

4.5λ, the scattering width increased to -14 dB. Hence, a thicker cloak will result in

some degradation of performance for the same material parameter set. However, for
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Figure 4.20: Scattering width for cloaks where b = 4.5λ. Plots show an uncloaked
PEC cylinder (◦-line), an ideally cloaked PEC cylinder (M-line), and cloaks for µθ

approximations using 10, 50, 100, and 150 terms (¤, ¦, ?, and O-lines).

all values of b, as the number of terms goes to infinity, the performance approaches

that of the ideal case, as expected.

4.5 Summary

In this section, a new way to develop simplified material parameter sets for

cylindrical cloaks was presented. Specifically, for TMz incident waves, the approx-

imation of µθ should first be defined using a Taylor series expansion of the ideal

parameter as defined using all constraint equations. TEz results are easily obtained

by the application of duality. The constitutive parameters µr and εz can be deter-

mined by making the products µθεz and µrεz equal to the same products using the

ideal material parameter set. The performance of cloaks developed in this manner

is limited only by the number of terms used in the Taylor series expansion, which is

dictated by existing manufacturing capabilities. Scattering width improvement was

observed for all angles when compared to previous published material parameter sets.

Significant improvement was noted in the forward scattering region. It was also shown

the simplified parameter set put forth in [102] is a simplification of this method in
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which the Taylor series expansion of µθ is limited to the first term. These parameter

sets also have relatively consistent performance for all values of b. Performance for

a constant number of terms in the Taylor series does slightly degrade as b increases,

but for all b, ideal cloaking performance is approached as N →∞.
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V. Computational Improvement Using a Green’s Function

As discussed in Chapter II, most of the simulations involving cloaks have been done

using the Comsol Multiphysics software, a finite-element-based software package. The

finite element method is particularly useful to simulate cloaks due to the inhomogene-

ity of the constitutive parameters. However, there are limitations and trade-offs which

must be considered when solving a problem using FEM. FEM partitions a computa-

tional domain into a large number of subdomains of simple geometric shapes. The

partitioning grid is commonly called the mesh. For two-dimensional problems, tri-

angular elements are commonly used, but there are others. The solution to the dif-

ferential equation is obtained for each element. Thus, the finer the mesh used when

modeling the problem geometry, the more accurate the solution [95]. Some geometries

require greater mesh fidelity due to a rapid variation in geometry or spatial parame-

ters. Similarly, simulations with large computational domains require more elements

due to the problem size. Larger, denser meshes result in an increased computational

burden which can result in long solution times. In this chapter, a Green’s function

formulation is developed to determine scattering widths from a cylindrically cloaked

PEC cylinder. Solution time is significantly reduced when solving for σ2D using the

Green’s function compared to FEM methods. The tradeoff accompanying the Green’s

function implementation is the cloak formulation is now limited to a cylindrical ge-

ometry with a PEC lining the inner boundary. Changing the cloak geometry would

require the derivation of a different Green’s function.

5.1 Solution Geometry

Consider the geometry shown in Figure 5.1. A theoretical solution for the PEC

cylinder’s scattering width when illuminated by an incident TEz plane wave exists

and has the closed form analytic expression shown below [13].

σ2D = lim
r→∞

2λ

π

∣∣∣∣∣
∞∑

m=0

εm
J
′
m(koa)

H
(2)′
m (koa)

cos(mθ)

∣∣∣∣∣

2

(5.1)
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Figure 5.1: Geometry for an FEM simulation of scattering from a PEC cylinder.

In Equation 5.1, ko is the free space wave number, θ is the observation angle, and εm

is 1 for m = 0 and 2 otherwise. Note also that ′ implies differentiation with respect to

r. Obviously Equation 5.1 is an infinite sum, meaning the exact theoretical solution

can never be computed using a computer. However, m can be truncated based on the

specified level of accuracy. For this work, the summation in Equation 5.1 is truncated

to M using the following criteria:

x = max |Fm| ,m ∈ [0,M ] ,

∀ m > M, |Fm| < 0.01x. (5.2)

where Fm = J ′m(koa)

H
′(2)
m (koa)

in Equation 5.2. The validity of truncation using Equation 5.2

can be verified by comparing the calculated scattering widths of a PEC cylinder of

radius a = λ for m = 10, which is the determined sum limit based on the criteria in

Equation 5.2, and m = 50. The metric used to compare the similarity between the

solutions is the average difference in σ2D. Mathematically, this is written as

∆ =
1

M

M∑
p=1

(
σA

2D(θp)− σB
2D(θp)

)
, (5.3)
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where M is the total number of observation angles, and the σ2D terms are the scat-

tering widths which will be compared. ∆ for σA
2D = σ2D|m=10 and σB

2D = σ2D|m=50 is

0.0063 m2. The scattering width for m = 10 is plotted in Figure 5.2 (blue line). Note

σ2D is on the order of 1 - 20 m2. Thus, a ∆ of 0.0063 m2 is considered negligible.

The analytic solution in Equation 5.1 can be compared with the FEM solution

obtained using the Comsol software. Note the computational boundary is only 5λ×5λ.

As was done in Chapter IV, the near field results obtained using Comsol can be

transformed to the far zone to obtain the two-dimensional scattering width. Different

meshes were used in the Comsol simulations. A smaller maximum element length

(MEL) corresponds to a finer, denser mesh. Simulation results were obtained using

seven different meshes. Results are plotted in Figure 5.2 with additional information

on problem size and solution speed listed in Table 5.1.

Obviously there is good visual agreement between the analytic and FEM so-

lutions with the only noticeable differences occurring when MEL = 0.5λ. However,

a metric was needed other than visual alignment to define FEM solution accuracy.

Therefore, based on the results in Figure 5.2 and Table 5.1, ∆ on the order of 0.1
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Table 5.1: Analytic and FEM Solution Comparisons
MEL Unknowns Time ∆σ2D|m=10

0.5λ 2,056 0.17 s 0.171 m2

0.25λ 3,832 0.23 s 0.125 m2

0.1λ 23,146 1.04 s 0.039 m2

0.075λ 40,654 1.67 s 0.039 m2

0.05λ 92,168 4.02 s 0.043 m2

0.025λ 366,024 16.5 s 0.043 m2

0.01λ 2,292,872 1,493 s 0.043 m2

m2 was defined as the threshold for good solution agreement. For the geometry in

Figure 5.1, an MEL of 0.1λ is sufficient to obtain good solution agreement. Addi-

tional mesh fidelity does not result in better solution agreement, and it also requires

significantly longer solution times. As will be seen shortly, there are cloak geometries

where an MEL = 0.1λ does not result in sufficient mesh fidelity due to the thinness

of subdomains within the computation region.

5.2 Green’s Function for a Layered PEC Cylinder

Green’s functions are routinely used in electromagnetic scattering problems.

However, they have not been applied to solve radiation problems involving cloaks,

likely due to the difficulty in their derivation due to the anisotropic nature of a

cloak’s material parameters. As discussed in Section 2.4, a cylindrical cloak can

be approximated by using concentric layers of isotropic material with homogeneous

permittivity and permeability. Therefore, a Green’s function for a magnetic line

source in the far zone radiating in the presence of a PEC cylinder of radius r = a

covered by n layers of homogeneous material approximates a TEz plane wave incident

on a cloaked cylinder. This geometry is shown in Figure 5.3. Once the Green’s

function is known, the total field can be found by

⇀

H
TOT

= − k2
o

4ωµo

Im

↔
I · ↔G, (5.4)
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Figure 5.3: Problem geometry for Green’s function derivation

where Im is the strength of the magnetic line source,
↔
I is the unit dyad, and

↔
G is the

Green’s function.

The derivation of such a Green’s function is not a new concept. Methods similar

to what is proposed here have been used to study near and far field solutions for a

PEC cylinder covered by isotropic lossless materials [10,103]. However, these analyses

focused on the scattering properties of PEC cylinders layered with double negative

materials.

A Green’s function for the geometry shown in Figure 5.3 was derived using the

method described in [23] with the details shown in Appendix B. A Green’s function

for a magnetic line source radiating in the presence of a PEC cylinder with n layers

of homogeneous, isotropic material has the form:

↔
G = −j

4

∞∑
m=0

εm cos [m(θ − θ′)]
[
Jm(kor<) +

Bn+1
m

An+1
m

H(2)
m (kor<)

]
H(2)

m (kor>), (5.5)

An+1
m = 1, (5.6)

B1
m = − J

′
m(k1a)

H
(2)′
m (k1a)

, (5.7)

Note that r<, r> are the lesser and greater of r and r′ respectively, and θ, θ′ are the

observation and source angular locations. The remaining unknowns in Equation 5.5

86



are the Bn+1
m coefficients. These coefficients are determined based on the junction

conditions at the radial boundaries which force continuity of tangential magnetic and

electric fields. Due to the PEC boundary at r = a, the B1
m value is known, which

allows the remaining values to be found by solving a system of equations of the form

Ax = B, where A is a 2n× 2n matrix, and n is the number of layers surrounding the

PEC (see Appendix B for details). Note Equation 5.5 is valid when observing the

field where r > rn i.e. in the free space region.

Equation 5.5 contains components for the incident field and the scattered field.

The incident field is represented by the Jm(kor<) component while the scattered field

is represented by the H
(2)
m (kor<) terms. Thus, the Green’s function can be rewritten as

two separate functions. This is done because the goal is to compute σ2D and compare

the result obtained using a Green’s function formulation to the result obtained using

an FEM-based method (Comsol). Also, without loss of generality, the magnetic line

source is assumed to be at θ′ = 180o in the far zone, which results in a plane wave

traveling in the x̂ direction. Hence, the Green’s function for the incident field can

first be written as

Ḡi = −j

4

∞∑
m=0

εm(−1)m cos (mθ)Jm(kor)H
(2)
m (kor

′). (5.8)

The large argument approximation for the Hankel function [7] can then be used to

simplify the expression. This is done because the line source is assumed to be in the

far zone in order for plane wave incidence.

H(2)
m (kor

′) → jm

√
2

πko

e−jkor′

√
r′

ej π
4 (5.9)

The following is defined for simplicity of writing.

Ho =

√
2

πko

e−jkor′

√
r′

ej π
4 (5.10)
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Hence, the Green’s function for the incident field at the surface of the layered PEC

cylinder (r = b) is

Ḡi = −j

4
Ho

∞∑
m=0

εm(−j)m cos (mθ)Jm(kob). (5.11)

Similarly, the Green’s function for the scattered field can be represented as

Ḡs = −j

4
Ho

∞∑
m=0

εm(−j)m cos (mθ)
Bn+1

m

An+1
m

H(2)
m (kor). (5.12)

The large argument approximation for the Hankel function can again be applied since

the ultimate goal is to calculate σ2D.

Ḡs = −j

4
Ho

√
2

πko

e−jkor

√
r

ej π
4

∞∑
m=0

εm cos (mθ)
Bn+1

m

An+1
m

(5.13)

In general, scattering width can be found by

σ2D = lim
r→∞

2πr
|Hs|2
|H i|2 . (5.14)

Therefore, the scattering width for a layered PEC cylinder with an incident TEz plane

wave traveling in the positive x̂ direction is

σ2D =
2λ

π

∣∣∣∣
∞∑

m=0

εm cos (mθ)Bn+1
m

An+1
m

∣∣∣∣
2

∣∣∣∣
∞∑

m=0

εm(−j)m cos (mθ)Jm(kob)

∣∣∣∣
2 . (5.15)

The summation in Equation 5.15 is truncated to m = M using the criteria put forth

in Equation 5.2. The closed form analytic solution for σ2D can be used to solve for

the scattering width from a layered PEC cylinder.
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5.3 FEM and Green’s Function Comparison

Since it is not yet possible to manufacture cloaks with the required spatially

varying anisotropic parameters, concentric rings of anisotropic material are used to

approximate the spatial variation [79]. Such a realization can be simulated in Comsol,

but the thinness of the layers necessitates more elements resulting in an increased com-

putational burden, as will be shown below. Two thin layers of homogeneous isotropic

material can be used to approximate the anisotropic concentric rings. This geometry

approximation can be quickly solved using the Green’s function implementation.

Consider a two-dimensional ideal cylindrical cloak with material parameters,

repeated below for convenience.

εr =
r − a

r
, εθ =

r

r − a
, µz =

r − a

r

(
b

b− a

)2

(5.16)

In order to manufacture this cloak, concentric rings of anisotropic material would be

required to approximate the spatial variation, much like what was done in [79]. Based

on the results in [40], the anisotropic concentric rings can be approximated by using

thin layers of homogeneous isotropic material. Recall from Section 2.4, the required

material parameters for the layers approximating the anisotropic layer are

εθ =
ε1 + ηε2

1 + η
, (5.17)

1

εr

=
1

1 + η

(
1

ε1

+
η

ε2

)
. (5.18)

As an example, consider an ideal cloak realized using ten layers of concentric

anisotropic rings. Twenty layers of homogeneous, isotropic rings can be used to sim-

ulate the ten-layer anisotropic cloak. The values of εr, εθ, and µz for each anisotropic

ring are determined by evaluating Equation 5.16 at each of the ten layers (r = rn).

The permittivity values for the isotropic layers are then determined by substituting
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Figure 5.4: Green’s function and FEM results comparison for PEC with 20 layers

the values for εr and εθ into Equations 5.17 and 5.18. The value of µz is determined

by evaluating µz given in Equation 5.16 at r = rn.

A 20-layer isotropic approximation of the ideal cloak surrounding a PEC cylin-

der was simulated using Comsol. Scattering width values were determined based on

Comsol results. Analytic results were found using Equation 5.15. All results are

shown in Figure 5.4. Additionally, results from the two methods for a simulation

using 40 layers of isotropic material to simulate a 20-layer cloak of anisotropic con-

centric rings approximating an ideal cloak were computed. These are shown in Figure

5.5.

Note the similarities between the Comsol and Green’s function solutions. For

the 20-layer results, ∆ was 0.14 m2, which shows good agreement between the two

solutions. However, there is a noticeable difference in computation time. The Green’s

function solution took 2.28 s. The Comsol solution was obtained by first creating a

non-uniform mesh over the computational domain. This was necessary because the

spacing between layers was only 0.05λ and 0.025λ for the 20 and 40-layer simulations

respectively, and a uniform mesh with MEL < 0.01λ was not possible due to memory

limitations of the Dell 690 precision work station with eight gigabytes of RAM. The
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Figure 5.5: Green’s Function and FEM Results Comparison for PEC with 40 Layers

MEL in the concentric layers was limited to 0.007λ, while for the rest of the com-

putational domain, MEL = 0.05λ. For the 20-layer FEM simulation, the mesh had

911,004 elements and a solution time of 125 s.

The 40-layer simulation resulted in a ∆ of 0.04 m2. The Green’s function

solution time was 2.82 s. The Comsol solution used a similar non-uniform mesh

with 881,892 elements and had a solution time of 124 s. Obviously, the Green’s

function method is faster, particularly if a number of simulations are to be performed

to conduct an optimization or an error analysis based on parameter or thickness

variations in the layers. Additionally, if more layers are to be used, an FEM solution

will require finer meshing within the layers, increasing the number of unknowns which

will increase solution time.

Another benefit of using the Green’s function to calculate scattering widths is

when large cloak geometries are simulated. Up until this point, all previous simula-

tions in this section have used the cloak parameters such that a = λ and b = 2λ. If a

and b are increased, the computational domain in an FEM simulation increases. This

will increase the number of unknowns if the same limits on MEL are used, ultimately

resulting in a longer solution time. The MEL can be increased in order to prevent out-
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Figure 5.6: Larger computational domain

of-memory errors during solution at the penalty of reduced accuracy. Increasing the

cloak radii in the Green’s function does result in having to include more terms in the

summation due to the constraints of Equation 5.2, but this increase in computational

budget is minimal compared to the increased burden in an FEM simulation.

As an example, consider the simulation geometry shown in Figure 5.6. More

elements are going to be needed since the computational domain is 10λ × 10λ. A

simulation of a 20-layer cloak of homogeneous material approximating the material

parameters shown Equation 5.16 was performed using Comsol, with scattering width

results obtained and compared to results using the Green’s function formulation.

These results are shown in Figure 5.7. The ∆ between the two simulations was

1.39 m2, much larger than the 0.1 m2 threshold. As before, a non-uniform mesh was

applied to prevent out-of-memory errors. The MEL for the layers was 0.01λ, while for

the remaining areas, MEL = 0.3λ. Note the MEL has been increased compared to the

same 20-layer simulation where a = λ and b = 2λ, meaning FEM solution accuracy

will decrease. This had to be done due to the increase in the size of the computational

domain. The resulting mesh consisted of 972,698 elements and resulted in a solution

time of 116 s. In addition to the solution time, Comsol took 168 s to simply create

the mesh. Further increases in cloak size resulted in having to significantly increase

92



0 20 40 60 80 100 120 140 160 180
−25

−20

−15

−10

−5

0

5

10

15

20

25

30

θ

σ 2D
 in

 d
B

FEM and GF σ
2D

 Comparison, a = 3λ, b = 4λ

 

 

FEM Solution
GF Solution

Figure 5.7: σ2D for larger cylinder and cloak size

MEL in order prevent mesh size from growing beyond the computational capabilities.

The increase in problem geometry had little impact on the Green’s function solution.

The solution time did increase due to the increase in the number of terms in the

summation, but the solve time was only 3.89 s. The Green’s function proved to be

much less computationally intensive for larger problem sizes

Obviously a Green’s function approach for determining scattering widths from

a cylindrical cloak results in a significant computational savings. The computational

domain size is directly related to the cylindrical cloaks’s radius in that a larger cloak

results in a larger domain size. The increase in computational domain requires either a

longer solution time due to the increased number of elements or a reduction in mesh

density which impacts solution accuracy. The Green’s function implementation is

much faster than an FEM solution and is more adept at handling problem geometries

which require denser meshes or have larger computation domains.

5.4 Summary

This chapter presented a Green’s function implementation used to solve for the

far zone scattered field from a two-dimensional cylindrical cloak. The Green’s function
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implementation used the fact thin, concentric, isotropic, homogeneous layers could be

used to realize a cloak’s anisotropic properties. The Green’s function implementation

was shown to be considerably faster when solving for the scattered field compared to

FEM solutions particulary for larger computational domains. This benefit is at the

expense of being constrained to a cylindrical geometry. A different Green’s function

would have to be derived for a different cloak shape.
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VI. Metamaterial Eigenfrequency Decomposition

Metamaterials are the building blocks for many of the applications defined by trans-

formation optics. Transformation optics defines a material’s constitutive parameters

necessary to achieve a desired electromagnetic field behavior. As discussed in Chapter

III, the unit cells which make up a metamaterial are designed to interact with the

electromagnetic fields, resulting in a desired electric or magnetic effect (or in some

cases both). The unit cell metallizations are first designed with knowledge of these

field interactions, but ultimately, simulations are required to measure the exact reso-

nant frequency of the devices. This results in an empirical catalogue of measurements

which help determine how changes in various unit cell design parameters affect the

resonant frequencies.

Fischer et al. used an eigendecomposition to design substrates for patch an-

tennas [31]. The eigendecomposition identifies the individual eigenfrequencies of a

structure. These eigenfrequencies can then be correlated to the device characteris-

tics, whether it be geometry or material property. Fischer et al. used this informa-

tion to manipulate eigenfrequency location by changing the material properties of the

device. This resulted in an increased bandwidth for the antennas. A similar eigende-

composition design method could be applied to metamaterial unit cells. This initial

investigation determined the eigendecomposition algorithm is applicable to metama-

terial unit cell designs. What follows is a description of the process as it applies to

metamaterials using the Comsol Multiphysics software package.

6.1 Comsol and the Finite Element Method

The Comsol Multiphysics software package is used to obtain all FEM solu-

tions in this chapter. Therefore, it was necessary to understand exactly how Comsol

implements the finite element method to solve three dimensional electromagnetics

problems. Vector basis functions (also known as edge elements) are used within each

element to approximate the unknown [27]. A description and derivation of the gen-
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eral form for the vector basis functions within a tetrahedral subdomain is given in

Appendix C.

The governing partial differential equation which Comsol solves is the vector

wave equation. This can easily be derived from Maxwell’s Equations. Assuming a

source free domain, Maxwell’s equations are

∇× ⇀

E = −jωµ
⇀

H, (6.1)

∇× ⇀

H = jωε
⇀

E. (6.2)

The electric field vector wave equation can be developed by taking the curl of Equation

6.1, and substituting the expression for ∇× ⇀

H from Equation 6.2 into this expression.

The result is

∇×
(
∇× ⇀

E

µr

)
− k2

oεr

⇀

E = 0. (6.3)

The first vector Green’s theorem can be used to develop the weak form of the above

equation [95]

∫

V e

∇× ⇀

E · ∇ × ⇀

W i

µr

dV − k2
o

∫

V e

εr

⇀

E · ⇀

W idV = 0, (6.4)

where the
⇀

W i terms are test functions.

The FEM approximates
⇀

E within each geometric element using vector basis

functions. For this work, tetrahedral elements are used, which results in six vector

basis functions per tetrahedral. Within each element, the electric field is approxi-

mated as
⇀

E ∼=
6∑

j=1

⇀

N
e

jE
e
j . (6.5)

The unknowns are the Ee
j terms. These are found by formulating a system of equations

which allows the unknowns to be found. The system of equations is formed by first

taking the dot-product of each vector basis function with the wave equation, and
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integrating the result over the volume of the tetrahedral element.

6∑
i=1

(∫

V e

∇×
(
∇× ⇀

E

µr

)
· ⇀

N idV − k2
o

∫

V e

εr

⇀

E · ⇀

N idV

)
= 0 (6.6)

Additionally, the test functions,
⇀

W i, are defined to be the same as the vector basis

functions i.e
⇀

W i =
⇀

N i. Finally, replacing
⇀

E in Equation 6.6 with the approximation

in Equation 6.5 yields

6∑
i=1

6∑
j=1

∫

V e

∇× Ee
j

⇀

N
e

j · ∇ × ⇀

N
e

i

µr

dV − k2
o

∫

V e

εrE
e
j

⇀

N
e

j ·
⇀

N
e

idV = 0. (6.7)

The Ee
j ’s are constant coefficients and can be removed from the integration. Addi-

tionally, the dot-product is commutative; thus, the order can be reversed. The final

equation is

6∑
i=1

6∑
j=1


Ee

j

∫

V e

∇× ⇀

N
e

i · ∇ × ⇀

N
e

j

µr

dV e − k2
oE

e
j

∫

V e

εr

⇀

N
e

i ·
⇀

N
e

jdV e


 = 0. (6.8)

Note that each integral can be evaluated analytically. Additionally, within each el-

ement, µr and εr are assumed to be homogeneous and can be removed from the

integration. The curl terms can be evaluated based on the following [46]:

⇀

N
e

i =
⇀

W i1i2l
e
i ,

∇× ⇀

W i1i2 = 2∇Le
i1
×∇Le

i2
.

(6.9)

The lei represent the length of the ith edge of each element (Appendix C has further

details). The linear interpolation functions, Li1 , Li2 , i = 1, 2, 3, 4, are defined as

Le
i =

1

6V e
(ae

i + be
ix + ce

iy + de
iz) , (6.10)

97



where ae
i , b

e
i , c

e
i , and de

i are constants defined in Appendix C. The gradients in Equa-

tion 6.9 are

∇Le
i =

1

6V e
(be

i x̂ + ce
i ŷ + de

i ẑ) , (6.11)

and the curl, ∇× ⇀

N
e

i , can be written as

∇× ⇀

N
e

i =
2lei

(6V e)2

[(
ce
i1
de

i2
− ce

i2
de

i1

)
x̂ +

(
be
i2
de

i1
− be

i1
de

i2

)
ŷ +

(
be
i1
ce
i2
− be

i2
ce
i1

)
ẑ
]
. (6.12)

Based on this result, it is possible to write the result for the dot product of the two

curls as

∇× ⇀

N
e

i · ∇ × ⇀

N
e

j =
4lei lej

(6V e)4

[(
ce
i1
de

i2
− ce

i2
de

i1

) (
ce
j1

de
j2
− ce

j2
de

j1

)
+

(
be
i2
de

i1
− be

i1
de

i2

) (
be
j2

de
j1
− be

j1
de

j2

)
+

(
be
i1
ce
i2
− be

i2
ce
i1

) (
be
j1

ce
j2
− be

j2
ce
j1

)]
.

(6.13)

The above are all constants. Thus, the following is the result for the first integral.

1
µr

∫
V e ∇× ⇀

N
e

i · ∇ × ⇀

N
e

jdV =
4lei lejV e

(6V e)4µr

[(
ce
i1
de

i2
− ce

i2
de

i1

) (
ce
j1

de
j2
− ce

j2
de

j1

)
+

(
be
i2
de

i1
− be

i1
de

i2

) (
be
j2

de
j1
− be

j1
de

j2

)
+

(
be
i1
ce
i2
− be

i2
ce
i1

) (
be
j1

ce
j2
− be

j2
ce
j1

)] (6.14)

A similar procedure can be done to determine
⇀

N
e

i ·
⇀

N
e

j . The vector basis functions

are related to the linear interpolation functions by [46]

⇀

N
e

i = lei (Li1∇Li2 − Li2∇Li1) . (6.15)

Therefore,
⇀

N
e

i and
⇀

N
e

j can be expressed as

⇀

N
e

i =
lei

6V e [(Li1bi2 − Li2bi1) x̂ + (Li1ci2 − Li2ci1) ŷ + (Li1di2 − Li2di1) ẑ] ,
⇀

N
e

j =
lej

6V e [(Lj1bj2 − Lj2bj1) x̂ + (Lj1cj2 − Lj2cj1) ŷ + (Lj1dj2 − Lj2dj1) ẑ] .
(6.16)

The dot product can be expressed by the following. First let

fij = be
i b

e
j + ce

i c
e
j + de

id
e
j (6.17)
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Then the dot product is

⇀

N i ·
⇀

N j =
lei l

e
j

(6V e)2 [Li1Li2fi2j2 − Li1Lj2fi2j1 − Li2Lj1fi1j2 + Li2Lj2fi1j1 ] (6.18)

Note the Li terms are functions of position. Therefore, the evaluation of the second

integral is slightly more complicated. The following formula can be used [46].

∫

V e

(Le
1)

k (Le
2)

l dV =
k!l!

(k + l + 3)!
6V e (6.19)

As an example, consider
⇀

N
e

1 ·
⇀

N
e

1.

⇀

N
e

1 ·
⇀

N
e

1 =
(le1)

2

(6V e)2 [L1L2f22 − L1L2f21 − L2L1f12 + L2L2f11] (6.20)

Therefore, the second integral for the case where i = 1 and j = 1 can be written as

k2
oεr

∫
V e

⇀

N
e

1 ·
⇀

N
e

1dV e =
k2

oεr(le1)2

(6V e)2

[
f22

∫
V e (L1)

2dV −
f21

∫
V e L1L2dV − f12

∫
V e L2L1dV + f11

∫
V e (L2)

2dV
]
.

(6.21)

Using the integration formula and noting f12 = f21, the result is

k2
o

∫

V e

εr

⇀

N
e

1 ·
⇀

N
e

1dV e =
k2

oεr(l
e
1)

2

360V e
[f11 − f12 + f22] (6.22)

It is possible to analytically integrate both integrals in Equation 6.8. Therefore,

a system of equations can be formulated such that the unknown terms, Ee
j , can be

determined. Care must be taken when constructing the global matrices, as elements

share edges. Knowing the method used to construct these matrices was not important

to this effort. Knowing the formulation was important and verified as such in the next

section.
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6.2 Comsol Formulation Verification

As discussed above, the FEM converts a partial differential equation into a

matrix problem. The matrix elements consist of two parts: those dependent on the

permeability and those dependent on permittivity. Specifically, examining Equation

6.8, it is possible to define the following:

A
(1)
ij =

1

µr

∫

V e

∇× ⇀

N
e

i · ∇ × ⇀

N
e

jdV , (6.23)

A
(2)
ij = −k2

oεr

∫

V e

⇀

N i ·
⇀

N jdV . (6.24)

The complete impedance matrix, A, is defined as

A = A(1) + A(2). (6.25)

It was vital to be able to access the matrices defined in Equations 6.23 and 6.24. How-

ever, in its default settings, Comsol provides access to only the complete impedance

matrix. The A(1) matrix could be obtained by setting all domain permittivities to

zero, effectively eliminating the A(2) contribution. The A(2) matrix could then be

found by first solving for A and then subtracting the A(1) matrix.

The A(2) matrix could also be directly evaluated by manually modifying the

partial differential equation which Comsol uses to generate the system of equations

[34]. Effectively, the governing weak form of the partial differential equation was

changed to

−k2
o

∫

V e

εr

⇀

E · ⇀

N idV = 0. (6.26)

Note Equation 6.26 is scaled by k2
o . Therefore, checking the validity of the A(2) matrix

was possible. Doubling ko resulted in each term in the A(2) matrix being scaled by a

factor of four. Additionally, the A(2) matrix obtained by altering the equation system

was compared to that obtained by simply solving for the difference of A and A(1).

100



The results were the same to within 10−10 for various test cases. Therefore, it was

concluded the correct A(1) and A(2) matrices could be obtained from Comsol.

6.3 Eigendecompostion

A standard FEM formulation will solve a system of equations of the form

[A(1)(k) + A(2)(k)][E(k)] = [f(k)], (6.27)

where [E(k)] are the unknowns, [f(k)] is some forcing function, and k is the wave

number of the excitation. Note wave number is directly related to frequency.

The impedance matrix, A, has two components, A(1) and A(2). Note from

Equations 6.23 and 6.24 that A(1) is independent of frequency (k), while A(2) is

dependent on it. Hence, a normalized wave number, k̃, can be defined as [32]

k̃ =
k

ko

. (6.28)

Equation 6.28 can be used to write an equivalent expression for Equation 6.27.

[A(1)(ko) + k̃A(2)(ko)][E(k)] = [f(k)] (6.29)

The unknowns in Equation 6.29 can be found by

[E(k)] = [A(1)(ko) + k̃A(2)(ko)]
(−1)[f(k)]. (6.30)

The normalized eigenfrequencies are those values of k̃ which make the matrix inversion

on the right side of Equation 6.30 impossible. The eigenfrequencies can be analytically

found using the method put forth by Fischer et al. First an eigendecomposition on

the A(1) and A(2) matrices is performed.

XΛX(−1) = [A(2)(ko)]
(−1)A(1)(ko) (6.31)
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X is a matrix whose columns are the eigenvectors while Λ is a diagonal matrix whose

elements are the eigenvalues. An equivalent expression for Equation 6.30 can be

written using the eigendecomposition.

[E(k)] =

[
k̃2

↔
I + XΛX(−1)

](−1) [
A(2)(ko)

](−1)
[f(k)] (6.32)

The
↔
I term is the identity matrix. Equation 6.32 can be rewritten by defining

Λk̃ = Λ + D(k̃2), (6.33)

where D(k̃2) is a diagonal matrix with elements k̃2. Therefore, an equivalent form for

Equation 6.30 is [32]

[E(k)] = XΛ
(−1)

k̃
X(−1)[A(2)(ko)]

(−1)[f(k)]. (6.34)

Note that XΛ
(−1)

k̃
X(−1)[A(2)(ko)]

(−1) is resonant at k̃i =
√
−Re(λi). This is because

the elements of the diagonal matrix Λk̃ are λi + k̃2. Therefore, by defining k̃i as such,

there becomes a zero on the diagonal of the Λk̃ matrix, making it noninvertible or

resonant [31]. Thus, the eigenfrequencies for Equation 6.29 can be determined.

6.4 Eigendecomposition Verification

In order to verify the Comsol-generated A(1) and A(2) matrices could be used to

identify the eigenfrequencies for structures by the method described in the previous

section, a simple test case was performed. A rectangular cavity as shown in Figure

6.1 has easily determined eigenvalues. When PEC boundary conditions are applied

to all six faces, the TEz eigenvalues are given by [13]

(fr)mnp =
1

2π
√

µε

√(mπ

a

)2

+
(nπ

b

)2

+
(pπ

c

)2

, (6.35)
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Figure 6.1: PEC Rectangular Resonator Geometry

where m = 0, 1, 2..., n = 0, 1, 2..., p = 1, 2, 3... and m = n 6= 0. The TMz modes are

given by the same equation with the exception that m = 1, 2, 3..., n = 1, 2, 3..., and

p = 0, 1, 2....

A PEC rectangular resonator as shown in Figure 6.1 was created in Comsol

where a = 0.02286 m, b = 0.01016 m, and c = 0.1143 m. The eigenfrequencies

were extracted using the method described in the previous section. These are plotted

in Figure 6.2. The top graph shows all extracted eigenfrequencies while the bot-

tom graph zooms in to the region where the eigenfrequencies from 6 - 20 GHz are

shown. For the rectangular resonator shown in Figure 6.1 with values previously de-

fined for a, b, and c, the theoretically calculated eigenfrequencies were compared to

the extracted eigenfrequencies. These results are shown in Table 6.1. The extracted

eigenfrequencies matched the theoretical values to within 0.25% for all 21 eigenfre-

quencies less than 16 GHz. Above 16 GHz, the extracted frequencies did match the

theoretical ones. However, the extraction also produced non-theoretical values. For
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Figure 6.2: PEC Resonator Eigenfrequencies

example, there are 50 theoretical eigenfrequencies below 20 GHz. The extraction al-

gorithm produced 61. There are 145 eigenfrequencies below 30 GHz. The extraction

algorithm produced 205.

Equation 6.35 shows there to be an infinite number of eigenfrequencies. The

number of extracted eigenfrequencies is finite because the number of eigenfrequencies

is related to the size of the impedance matrices. It was found the frequency at

which the algorithm begins to extract non-theoretical values is also related to the

size of the impedance matrix. The size of the impedance matrices can be controlled

by increasing the mesh fidelity in Comsol. However, increases in mesh fidelity will

result in significant increases in computation time because the eigendecompostion

shown in Equation 6.31 is an O(N3) operation [32]. As an example, the results

shown in Figure 6.2 were obtained with a 9,516 × 9,516 element impedance matrix.

Eigenfrequency extraction execution time was 75 minutes. A less dense mesh resulting

in an impedance matrix with 1,190 × 1,190 elements resulted in a solution time of 7.57

seconds. However, the extraction algorithm found nontheoretical eigenfrequencies at
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Table 6.1: Eigenfrequencies in GHz for PEC Rectangular Resonator
m n p fTheory fExtracted |% Error|
1 0 1 6.687 6.686 0.009
1 0 2 7.062 7.061 0.018
1 0 3 7.647 7.646 0.009
1 0 4 8.397 8.394 0.030
1 0 5 9.273 9.268 0.050
1 0 6 10.243 10.237 0.049
1 0 7 11.281 11.273 0.076
1 0 8 12.372 12.362 0.085
2 0 1 13.180 13.169 0.082
2 0 2 13.374 13.363 0.084
1 0 9 13.502 13.481 0.152
2 0 3 13.692 13.678 0.099
2 0 4 14.125 14.105 0.136
1 0 10 14.662 14.638 0.161
2 0 5 14.662 14.646 0.110
0 1 1 14.812 14.774 0.253
0 1 2 14.985 14.949 0.235
0 1 3 15.269 15.240 0.189
2 0 6 15.294 15.275 0.120
0 1 4 15.659 15.627 0.202
1 0 11 15.846 15.823 0.143
2 0 7 16.008 15.985 0.145

12.79 and 13.00 GHz. Additionally, the error between the extracted and theoretical

eigenfrequencies increases as mesh fidelity decreases. For example, the error for the

101 mode for the reduced mesh is 0.33%, still small, but much larger than the result in

Table 6.1. Also, the extraction for the less dense mesh produced 72 eigenfrequencies

less than 20 GHz. Obviously better results are obtained with a denser mesh at the

penalty of increased solve times.

6.5 S-Parameter Measurements

As discussed in Chapter III, the published literature shows no S-parameter

results had been obtained using the Comsol Multiphysics software. To validate the

software’s capability, a unit cell as described in [90] was created in Comsol. This unit
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cell is shown in Figure 6.3. The dimensions of the unit cell were identical to those

Figure 6.3: Unit Cell for S-Parameter Measurements

used by Smith et al.. The cell size was cubic with d = 2.5 mm. The substrate was

0.25 mm thick with εr = 4.4 − j0.088. The outer ring was 2.2 mm with a linewidth

of 0.2 mm. The gap between the inner and outer ring was 0.15 mm, and the gap

between the ring end’s were each 0.3 mm. The rod on the opposite side had a width

of 0.14 mm and was 2.5 mm long. All metal thicknesses were 17 µm and were given

the properties of a PEC. S-parameter measurements were simulated in Comsol. The

constitutive parameters were extracted using the method described in Section 3.3.2.

All results were compared to the published ones and are shown in Figure 6.4. The

Comsol’s results were nearly identical to those in [90]. Therefore, it was concluded

the software could accurately provide S-parameter measurements.

The goal of this chapter is to perform an eigenfrequency extraction on the unit

cell shown in Figure 6.3. However, the size of the impedance matrix would be an

issue. The impedance matrix resulting from a Comsol S-parameter simulation of

the unit cell shown in Figure 6.3 was 352,692 × 352,692. Using even the coarsest

settings to create the mesh resulted in a 39,142 × 39,142 impedance matrix. Various

tests with the eigendecomposition algorithm showed any matrices larger than 20,000

× 20,000 elements would overwhelm the machine. Therefore, the thickness of the

metal was eliminated by making all metal structures infinitely thin PEC boundaries.

There was a concern this would drastically change the resonant characteristics of

the structure. However, S-parameter measurements were taken and compared to the
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Figure 6.4: S-Parameter Measurements and Extracted Index of Refraction

Table 6.2: Mesh Density and Impedance Matrix Size
Mesh Setting Mesh Number Impedance Matrix Size

Normal One 116,932 × 116,932
Coarse Two 34,578 × 34,578
Coarser Three 20,866 × 20,866

Extra Coarse Four 7,248 × 7,248
Extremely Coarse Five 3,260 × 3,260

original results. Infinitely thin metallic structures slightly shifted the S-parameter

measurements, but by approximately 0.1 GHz. There was still the same resonant

type behavior when using an embedded PEC structure compared to PEC structures

with small thicknesses. The advantage of removing the metal thickness is significantly

fewer mesh elements are required.

Using embedded PEC structures resulted in a smaller impedance matrix. How-

ever, the matrices were still too large. The density of the mesh was varied to determine

mesh density’s impact on the S-parameter measurements. Five different mesh set-

tings were used, each resulting in different impedance matrix sizes. These are shown

in Table 6.2 with the resulting S-parameter measurements shown in Figure 6.5.
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Figure 6.5: S-Parameter Magnitude Comparison for Mesh Densities

Based on these results, it is obvious the impact of using a smaller impedance

matrix (less dense mesh) does not significantly impact the resonant characteristics

of the unit cell. In the previous section it was shown the size of the impedance

matrix directly relates to the accuracy of the extracted eigenfrequencies. However,

due to computer limitations, the densest impedance matrix used for the unit cell

eigendecomposition in the following section was mesh number four, which had an

impedance matrix of 7,248 × 7,248.

6.6 Unit Cell Eigendecomposition

An eigendecomposition was performed on unit cells having the ring characteris-

tics shown in Figure 6.3. To help further reduce the impedance matrix size, the metal

rod was removed from the structure. This rod impacts the effective permittivity of

the unit cell structure. The permeability is a function of the metal rings.

The ring characteristics were slightly modified. The gap between the ring ends

was changed to 0.1 mm (Mod 1) and 0.6 mm (Mod 2). This significantly changes the

capacitance of the unit cell structure, which will alter the resonant behavior. This can

be seen in the S-parameter measurements shown in Figure 6.6. Note the pronounced
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Figure 6.6: S-Parameter Magnitudes for Gap Modifications

shift in the S-parameters by more than 1 GHz. An eigendecompostion was done on the

Mod 1 and Mod 2 configurations. The eigenvalues for each geometry were extracted

using the eigendecompostion method described in this chapter. Plots of the extracted

eigenvalues from each structure and the magnitude of their differences are shown in

Figure 6.7. Note each configuration resulted in 128 nonzero eigenvalues less than 100

GHz. Additionally, some values were significantly different, but these large differences

manifested in the higher eigenfrequencies. Those eigenvalues in the 6 - 18 GHz range

were very close. This is better seen in Figure 6.8. Based on the S-parameter measure-

ments, the structures have significantly different resonant behaviors. However, this is

not as obvious when examining the individual eigenfrequencies. It does appear there

are specific resonant regions. Note the lack of eigenvalues between 5.9 and 6.3 GHz,

8.5 and 9.4 GHz, and 13.4 and 14.1 GHz. However, no definitive conclusions could be

drawn from this data. Further eigenfrequency extractions were performed with the

gap in the rings modified to different widths (0.2, 0.3, 0.4, and 0.5 mm). Extracted

eigenfrequencies were compared, but no definitive changes in specific eigenfrequencies

were noted.
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Figure 6.7: Eigenvalues for Gap Modifications

It was determined the reduced impedance matrix sizes were not allowing enough

fidelity to see the eigenvalue changes. To test this, two different meshes were used to

create different, although similarly sized, impedance matrices for the Mod 2 structure.

The different meshes were created by toggling the jiggle function within Comsol. The

extracted eigenfrequencies obtained for the same structure but using different meshes

were compared. Results are shown in Figure 6.9. The extracted eigenfrequencies

are not identical. In fact, note the similarities between Figures 6.7 and 6.9. The

graphs of the differences between the extracted eigenfrequencies in both figures seem

to indicate the variations in the eigenfrequencies are a function of the mesh rather

than a function of changes in the structure of the unit cell. Unfortunately, increasing

the mesh size to the maximum capability did not alleviate this problem. It is believed,

however, that further increases in mesh fidelity will lead to specific eigenfrequency

identification of different unit cell structures. However, this could not be tested due

to memory limitations on the computational hardware.
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Figure 6.8: Eigenvalues from 6-18 GHz

6.7 Summary

This chapter presented an eigenfrequency decomposition method which has been

shown to be able to extract a structure’s individual eigenfrequencies. The method

was implemented using the Comsol Multiphysics software and tested using a structure

with theoretically known eigenfrequencies. Extracted eigenfrequencies of a rectangu-

lar PEC resonator matched the theoretical values. However, it was shown mesh

density plays an important roll in the fidelity of the solution.

The eigenfrequency decomposition method was applied to a metamaterial unit

cell. In order to reduce impedance matrix size, infinitely thin metallic boundaries

were used in place of actual metal structures. S-parameter measurements showed

this change had little impact on the device’s resonant behavior. Eigenfrequencies

were extracted from the unit cells. However, the mesh was not dense enough to

allow identification of shifts in eigenfrequencies as a result of changes to the device

structures. The extracted eigenfrequencies were impacted by changes in the mesh.

A finer, denser mesh is needed to adequately simulate these unit cells. However,

computational limits were reached due to memory limitations.
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Figure 6.9: Extracted Eigenfrequencies Using Different Meshes
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VII. Conclusions

7.1 Research Summary

The performance of simplified cylindrical cloaks with various constitutive pa-

rameters was analyzed in order to understand the impact constitutive values have on

field behavior. Prior to this research, the material parameters of simplified cloaks have

focused on satisfying specific values of εzµθ and εzµr while matching the impedance

at the cloak’s outer boundary. A third constraint equation was introduced which

helps control the overall effectiveness of the cylindrical cloak.

Cylindrical cloaks were analyzed with constitutive parameters that satisfied

the specific values for εzµθ and εzµr. It was shown deviations from this derived

third constraint equation resulted in larger fields being transmitted into a cylindrical

cloak’s hidden region. As the cloak’s constitutive parameters were changed such that

this new constraint was better satisfied, the amount of energy transmitted into the

hidden region was shown to be reduced. The resulting impedance mismatch at r = b

due to changing the constitutive parameters resulted in a significant scattered field.

However, despite reducing energy transmitted into the hidden region, which resulted

in a reduction in the scattered field by the cloaked object, the cloak itself was creating

a large scattered field. Hence, in terms of overall scattering width, having a matched

impedance at r = b was shown to be more important than reducing the transmitted

energy into the hidden region.

A new way to develop simplified material parameter sets for cylindrical cloaks

was developed. Specifically, for TMz incident waves, the approximation of µθ should

first be defined using a Taylor series expansion of the ideal parameter as defined by the

derived third constraint equation. The constitutive parameters µr and εz can then be

determined by making the products µθεz and µrεz equal to the same products using

the ideal material parameter set. The performance of cloaks developed in this manner

is limited only by the number of terms used in the Taylor series expansion, which is

dictated by existing manufacturing capabilities. Additionally, the applicability of this

method extends to TEz fields by duality.
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Scattering width improvement was observed for all angles when compared to

previous published material parameter sets. Significant improvement was noted in

the forward scattering region. It was also shown the simplified parameter set put

forth in [102] is a simplification of this method in which the Taylor series expansion

of µθ is limited to the first term. These parameter sets were found to have relatively

consistent performance for all values of the cloak’s radial boundary, b. Performance

for a constant number of terms in the Taylor series does slightly degrade as b increases,

but for all b, ideal cloaking performance is approached as N →∞.

A Green’s function approach for determining scattering widths from a cylindri-

cal cloak was shown to have significant computational savings compared to standard

FEM methods. This savings can be useful for error analysis or optimization studies on

a particular cloak geometry. Also, the computational domain size is directly related

to the cylindrical cloak’s radius. A larger cloak results in a larger domain size. The

increase in computational domain requires either a longer solution time due to the

increased number of elements or a reduction in mesh density which impacts solution

accuracy. The Green’s function implementation is much faster than an FEM solution

and is more adept at handling larger problem geometries.

Metamaterial unit cells were analyzed using an eigendecomposition technique.

S-parameter measurements showed definite shifts in unit cell resonant frequencies due

to structural changes. Eigenfrequencies were extracted from the unit cells. Shifts in

resonant frequency locations were noted for different cell geometries, but no defini-

tive relationships could be drawn. Mesh densities were limited to very coarse set-

tings due to computational limitations. Extracted eigenfrequencies were shown to be

mesh-dependent. The problem could be ameliorated by increasing mesh fidelity, but

memory limitations were reached preventing this was being further explored.

7.2 Recommendations for Future Research

The work done in Chapter IV considered infinite cylindrical cloaks. Such anal-

ysis was done due to computational efficiencies gained when solving two-dimensional

114



problems. To physically realize such a structure, a three-dimensional analysis will be

required i.e. the cloak must be terminated in the ẑ direction at z = z1 and z = z2.

This is shown in Figure 7.1. The termination of the infinite cylinder will result in

Figure 7.1: Three-Dimensional Cylindrical Cloak

scattering from the cloak even if the ideal parameters are assumed. This is due to

trailing edge diffraction resulting from the edges at z1 and z2 in Figure 7.1. It is

not clear how large the diffracted field will be. The typical 2-D-to-3-D conversion

formula [49],

σ3D = σ2D
2l2

λ
, (7.1)

cannot be used since σ2D for ideal cloaks is zero. However, for reduced parameter

cloaks, it will be interesting to analyze the accuracy of Equation 7.1. The ẑ directed

incident field will excite surface currents in the same direction. There are sharp

discontinuities at z = z1 and z = z2, which will result in a significant scattered field.

The size of the scattered field will depend on the properties of the terminating ends

of the cloak. Ways to reduce to the scattering could include tapering using a resistive

material to better match the termination to free space.
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Additionally, a three-dimensional cloak’s functionality with the ideal cloak pa-

rameters should be independent of θ. As the incident angle is swept around the body

of the cloak. The diffraction effects should be identical for all incident θ angles. How-

ever, when θ is changed i.e. the incident wave approaches from a direction not normal

to the cylinder’s broad-side, there will be a significant change in RCS because the

terminated ends’ scattering mechanism is changing from that of a grazing incidence

to a specular return.

This work focused specifically on two-dimensional cylindrical cloaks. A compu-

tational improvement was noted by using a Green’s function to compute the scattering

width of a cloaked PEC cylinder. A PEC has a complex permittivity such that

εc(r, φ, ω) = lim
σ→∞

ε + j
σ

ω
, (7.2)

where σ is the conductivity of the material. Alternate Green’s functions can be

derived such that σ is finite at r = a, which results in field penetration into the

hidden region. The material inside the hidden region may be inhomogeneous and

not symmetric with respect to θ. This would result in a significantly more complex

Green’s function, but allows for any geometry to be placed inside the inner boundary.

As discussed in Chapter II, there have been a number of different cloak geome-

tries discussed in the published literature. It would be an interesting academic exercise

to derive the Green’s function for these geometries and implement a computational

solution as was done in Chapter V. Green’s functions can help gain physical insight

into the cloaking function, which may prove useful for these alternate geometries. Ad-

ditionally, it is expected the Green’s function will provide a significant computational

improvement which may be beneficial if optimizations are being performed.

Finally, further work can be done extracting the eigenfrequencies from unit cell

designs. Specifically, increasing the memory should allow for denser meshes. This

increase in mesh density should allow for structural differences to manifest in eigen-

frequency shifts. This could create a new unit cell design paradigm where eigenfre-
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quency location is correlated to a structural feature. Designs could be optimized for

larger bandwidths by using Fischer’s optimization technique described in [31]. Addi-

tionally, alternate techniques to address the bandwidth problem of unit cells should

be investigated. Specifically, multiresonant structures within the same unit cell might

provide an increase in bandwidth. Additionally, active materials could be used in unit

cell designs to increase or actively change the bandwidth characteristics of the unit

cells.
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Appendix A. Material Parameter Derivation

The development below mirrors what is shown in [97] with clarifying text added where

the original text was deemed ambiguous or unclear. Maxwell’s equations govern the

behavior of electromagnetic waves; they are valid in any coordinate system. Ward

and Pendry have shown the behavior of electromagnetic waves in a general coordinate

system can be modeled in Cartesian coordinates using a designed material with spe-

cific permittivity and permeability tensors [72,97]. It is this fact upon which cloaking

is based. To prove this, take the general form of Faraday’s Law in free space.

∇× ⇀

E = −µo
∂

⇀

H

∂t
(A.1)

The desire is to find the form of Faraday’s law in a general coordinate system given by

the variables (q1, q2, q3) with unit vectors, û1, û2, and û3 in the direction of the q1, q2,

and q3 axes. Additionally, it is assumed there exists a transformation from Cartesian

coordinates to this general coordinate system where the point qi is a function of

(x, y, z) expressed as

q1 = F1(x, y, z),

q2 = F2(x, y, z),

q3 = F3(x, y, z).

(A.2)

It is assumed the transformation is invertible such that the point (q1, q2, q3) can be

transformed back to Cartesian coordinates by

x = f1(q1, q2, q3),

y = f2(q1, q2, q3),

z = f3(q1, q2, q3).

(A.3)

Next, it is important to understand how to calculate the differential length, ds, of a

line segment in the general coordinate system. This requires the use of the Euclidean

118



metric, which is defined in terms of the Jacobian, J , and is equal to JT J where

J =




∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q1


 , and JT =




∂x
∂q1

∂y
∂q1

∂z
∂q1

∂x
∂q2

∂y
∂q2

∂z
∂q2

∂x
∂q3

∂y
∂q3

∂z
∂q3


 . (A.4)

The squared length of a differential line segment is expressed as

ds2 =
3∑

i=1

3∑
j=1

(
JT J

)
ij

dqidqj. (A.5)

Obviously, in Cartesian coordinates, q1 = x, q2 = y, and q3 = z and the resulting

Jacobian, transpose Jacobian, and product of the two matrices are

J =




1 0 0

0 1 0

0 0 1


 , and JT =




1 0 0

0 1 0

0 0 1


 (A.6)

JT J =




1 0 0

0 1 0

0 0 1


 . (A.7)

Hence, the squared differential length is the familiar form

ds2 = dx2 + dy2 + dz2. (A.8)

In their paper, Ward and Pendry use the following notation

ds2 = Q11dq2
1 + Q22dq2

2 + Q33dq2
3 + 2Q12dq1dq2 + 2Q13dq1dq3 + 2Q23dq2dq3, (A.9)

where

Qij =
∂x

∂qi

∂x

∂qj

+
∂y

∂qi

∂y

∂qj

+
∂z

∂qi

∂z

∂qj

. (A.10)
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Using the definition of Qij, it is obvious Equation A.9 matches that of Equation A.5.

It is necessary to represent the differential length of a line segment in the di-

rection of one of the unit vectors. As an example, suppose there exists a differential

length only in the û1 direction. The result is dq2 = dq3 = 0. This results in the

length, ds to be

ds =
√

(JT J)11dq1. (A.11)

Using the notation of Ward and Pendry, this is identical to

ds =
√

Q11dq1. (A.12)

As a simplification, Ward and Pendry let Q2
1 = Q11 and Q1 =

√
Q11. Therefore

ds = Q1dq1, (A.13)

or, in more general terms, the differential length along the direction of the ith unit

vector is

dsi = Qidqi. (A.14)

This notation is necessary because the desire is to determine the form of Faraday’s

Law in the general coordinate system. To do this, consider a small differential element

of the shape of a parallelepiped as shown in Figure A.1. It is possible to calculate

Figure A.1: Differential parallelepiped element

the projection of ∇× ⇀

E onto the normal to the û1-û2 plane. To do this, first take the
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line integral. ∮

C

⇀

E · d⇀

l (A.15)

The integral can be evaluated by letting Ei =
⇀

E · ûi. The components along the closed

path are shown in Figure A.2. By taking into account the direction of the contour,

Figure A.2: Line integral differential components

the line integral is evaluated to be

∮

C

⇀

E · d⇀

l = dq1
∂

∂q1

[E2Q2dq2]− dq2
∂

∂q2

[E1Q1dq1] . (A.16)

Stokes Theorem can now be applied. Recall, Stokes Theorem states

∮

C

⇀

E · d⇀

l =

∫∫

S

∇× ⇀

E · n̂dS =

∫∫

S

∇× ⇀

E · (û1 × û2) Q1dq1Q2dq2. (A.17)

For this geometry note that

n̂ = û1 × û2,

dS = Q1dq1Q2dq2.
(A.18)

Thus, applying Stokes Theorem to the line integral along this differential contour

yields

∇× ⇀

E · (û1 × û2) Q1dq1Q2dq2 = dq1
∂

∂q1

[E2Q2dq2]− dq2
∂

∂q2

[E1Q1dq1] . (A.19)
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This can be simplified to

∇× ⇀

E · (û1 × û2) Q1Q2 =
∂

∂q1

[E2Q2]− ∂

∂q2

[E1Q1] . (A.20)

Letting Êi = QiEi results in the following.

∇× ⇀

E · (û1 × û2) Q1Q2 =
∂Ê2

∂q1

− ∂Ê1

∂q2

. (A.21)

Note the right hand side is component 3 of the curl of the electric field in the general

coordinate system.

(
∇q × Ê

)3

=
∂Ê2

∂q1

− ∂Ê1

∂q2

= ∇× ⇀

E · (û1 × û2) Q1Q2 (A.22)

Similarly, component 1 and component 2 of the curl of the electric field in the general

coordinate system can be written as

(
∇q × Ê

)1

=
∂Ê3

∂q2

− ∂Ê2

∂q3

= ∇× ⇀

E · (û2 × û3) Q2Q3 (A.23)

(
∇q × Ê

)2

=
∂Ê1

∂q3

− ∂Ê3

∂q1

= ∇× ⇀

E · (û3 × û1) Q1Q3 (A.24)

Note how the curl operation in the general coordinate system is of the same form as in

Cartesian coordinates, with the only difference being scale factors on the component

parts of the vector field.

The form for the curl in the general coordinated system can be substituted into

the left-hand side of Faraday’s Law (Equation A.22) and determine Faraday’s Law’s

form in the general coordinate system.

(
∇q × Ê

)3

= ∇× Ē · (û1 × û2) Q1Q2 = −µo
∂

⇀

H

∂t
· (û1 × û2) Q1Q2 (A.25)
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The magnetic field can be expressed in terms of its contravariant components as

⇀

H = H1û1 + H2û2 + H3û3 (A.26)

The relationship between the contravariant and covariant components of a vector is




H1

H2

H3




=




û1 · û1 û1 · û2 û1 · û3

û2 · û1 û2 · û2 û2 · û3

û3 · û1 û3 · û2 û3 · û3







H1

H2

H3




= ḡ




H1

H2

H3




, (A.27)

where ḡ is the metric tensor of the general coordinate system (not the Euclidean

metric). A more compact way of expressing this is

Hi =
3∑

j=1

gijH
j. (A.28)

Solving for the H i components results in

H i =
3∑

j=1

gijHj, (A.29)

where gij are the components of g−1. The above can be used in the expressions

to solve for components 1, 2, and 3 for the curl of the electric field in the general

coordinate system.

(
∇q × Ê

)1

= −µo

3∑
j=1

g1j ∂Hj

∂t
û1 · (û2 × û3) Q2Q3 (A.30)

(
∇q × Ê

)2

= −µo

3∑
j=1

g2j ∂Hj

∂t
û2 · (û3 × û1) Q3Q1 (A.31)

(
∇q × Ê

)3

= −µo

3∑
j=1

g3j ∂Hj

∂t
û3 · (û1 × û2) Q1Q2 (A.32)

123



By defining

µ̂ij = gij |û1 · (û2 × û3)|Q1Q2Q3(QiQj)
−1, (A.33)

and

Ĥj = QjHj, (A.34)

the following is the expression for the components of the curl of the electric field.

(
∇q × Ê

)i

= −µo

3∑
j=1

µ̂ij ∂Ĥj

∂t
(A.35)

A similar process can be done for Ampere’s Law to show that

(
∇q × Ĥ

)i

= εo

3∑
j=1

ε̂ij ∂Êj

∂t
. (A.36)

Thus, given a coordinate transformation from Cartesian coordinates, the behavior

of the electromagnetic fields in the coordinate transform space can be realized in

Cartesian coordinates using a complex material with permittivity and permeability

tensors described as [97]

ε̂ij = gij |û1 · (û2 × û3)|Q1Q2Q3(QiQj)
−1, (A.37)

µ̂ij = gij |û1 · (û2 × û3)|Q1Q2Q3(QiQj)
−1. (A.38)
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Appendix B. Green’s Function Derivation

A Green’s function for a magnetic line source radiating in the presence of a layered

PEC cylinder is derived. The geometry for this problem is shown in Figure B.1.

The final solution will be reached by first solving for the Green’s function for a PEC

Figure B.1: Problem geometry for Green’s function derivation

cylinder illuminated by a magnetic line source. This is done to ensure the process

is correct and to provide a series of checks for solution accuracy. Multiple layers of

dielectric materials surrounding the PEC will then be added to arrive at the final

solution.

For this problem, the source is an infinite magnetic line current in the ẑ direc-

tion. Because of this, the incident and scattered magnetic fields will only be in the

ẑ direction. Since the
⇀

H field will only have a ẑ component, the vector potential
⇀

F

will also only have a ẑ component; the vector potential,
⇀

A = 0. The potential field

must obey

∇2
⇀

F + k2
⇀

F = −ε
⇀

M, (B.1)

which is a vector wave equation. Since both
⇀

F and
⇀

M are ẑ directed, the following

scalar equation results

∇2Fz + k2Fz = −εMz. (B.2)
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Also, z-invariance has been assumed. Thus,

∇2
t Fz + k2Fz = −εMz, (B.3)

where ∇2
t is the transverse Laplacian, which in cylindrical coordinates is

∇2
t =

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
. (B.4)

The boundary conditions are
∂Fz

∂r

∣∣∣∣
r=a

= 0, (B.5)

which is a result of the PEC boundary at r = a. Also the radiation condition must

be satisfied.
∂Fz

∂r

∣∣∣∣
r→∞

= −jkFz|r→∞ (B.6)

Finally, it is expected that

F (r, θ) = F (r, θ + 2π). (B.7)

Now, the Green’s function must solve

∇2
t G(r̄, r̄′) + k2G(r̄, r̄′) = −δ(r̄ − r̄′). (B.8)

Note that

δ(r̄ − r̄′) =
δ(r − r′)δ(θ − θ′)

r
, (B.9)

and that

G(r̄, r̄′) = G(r, θ; r′, θ′) (B.10)

The differential equation the Green’s function must satisfy can be rewritten as

∇2
t G(r̄, r̄′) + k2G(r̄, r̄′) = −δ(r − r′)δ(θ − θ′)

r
. (B.11)
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From [25], the solution can be found by

G(r, θ; r′, θ′) =
∞∑

m=0

ũm(θ)ũ∗m(θ′)Gr(r, r
′; λm), (B.12)

where ũm are the orthonormal eigenfunctions which satisfy

[
d2

dθ2
+ λm

]
ũm(θ) = 0. (B.13)

Also, note that

k2 − λr − λθ

r2
= 0, (B.14)

and that Gr satisfies

1

r

d

dr

(
r
dGr

dr

)
+

(
k2 − λm

r2

)
Gr = −δ(r − r′)

r
. (B.15)

The following boundary conditions on the Green’s function are enforced.

∂G(r, θ; r′, θ′)
∂r

∣∣∣∣
r=a

= 0 (B.16)

G(r, θ; r′, θ′) = G(r, θ + 2π; r′, θ′) (B.17)

∂G(r, θ; r′, θ′)
∂r

∣∣∣∣
r→∞

= −jkG(r, θ; r′, θ′)|r→∞ (B.18)

By having G(r, θ; r′, θ′) satisfy the same boundary conditions as Fz, the complemen-

tary solution will vanish.

To begin, first solve for ũm(θ) and apply the appropriate boundary condition.

Recall [
d2

dθ2
+ λm

]
ũm(θ) = 0. (B.19)

A general solution for ũm(θ) is

ũm(θ) = A cos
√

λmθ + B sin
√

λmθ. (B.20)
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Applying ũm(θ) = ũm(θ + 2π) yields

A cos
√

λmθ + B sin
√

λmθ = A cos
√

λm(θ + 2π) + B sin
√

λm(θ + 2π). (B.21)

The only way this equation can be satisfied is if
√

λm = m where m = 0, 1, 2, ....

Therefore √
λm = m, m = 0, 1, 2, 3...,

λm = m2, m = 0, 1, 2, 3...
(B.22)

The general solution can be written as

ũm(θ) = A cos mθ + B sin mθ, m = 0, 1, 2... (B.23)

A cos mθ is orthogonal to B sin mθ. Therefore, it is known that A cos mθ, m = 0, 1, 2...

are all part of the solution of eigenvectors. Additionally, B sin mθ, m = 1, 2, ... are

also part of the solution for the eigenvectors. Also ũm(θ) has been defined as an or-

thonormal set of eigenfunctions. Therefore, it is possible to calculate the coefficients,

A and B because
2π∫

0

A2 cos2 mθdθ = 1, (B.24)

2π∫

0

B2 sin2 mθdθ = 1. (B.25)

Using the trigonometric identities

cos2 mθ = 1
2

+ 1
2
cos 2mθ,

sin2 mθ = 1
2
− 1

2
cos 2mθ,

(B.26)

results in the coefficients being found.

2π∫

0

A2 cos2 mθdθ =
A2

2




2π∫

0

dθ +

2π∫

0

cos 2mθdθ


 = 1 (B.27)
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This simplifies to

A =

√
1

π
. (B.28)

However, this is only valid if m 6= 0. Note when m = 0, the integral becomes

A2

2π∫

0

dθ = 1, (B.29)

which yields

A =

√
1

2π
. (B.30)

Following a similar process, it is found that

B =

√
1

π
. (B.31)

There is no issue when m = 0 for B since sin(0) = 0 which results in a trivial solution.

To make things easy to write, express A and B as

A,B =

√
εm

2π
(B.32)

where

εm =





1 m = 0

2 m = 1, 2, 3...
(B.33)

Note this shows that when m = 0, B =
√

1
2π

. This isn’t necessarily true, but makes

no difference since the term is multiplied by 0 and the result is the same. Now,

substituting the eigenvectors results in

∞∑
m=0

ũm(θ)ũm(θ′) =
1

2π

∞∑
m=0

εm [cos mθ cos mθ′ + sin mθ sin mθ′] . (B.34)
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Using the trigonometric identity

cos x cos y + sin x sin y = cos(x− y), (B.35)

the result is ∞∑
m=0

ũm(θ)ũm(θ′) =
1

2π

∞∑
m=0

εm cos m(θ − θ′), (B.36)

which is the first part of the solution for the Green’s function.

Next, the solution for G(r, r′; λm) is found. It has been shown λm = m2; thus

the notation can be rewritten as G(r, r′; m2). G(r, r′; m2) = Gr will satisfy

1

r

d

dr

(
r
dGr

dr

)
+

(
k2 − λm

r2

)
Gr = −δ(r − r′)

r
(B.37)

Multiplying each side of the equation by r results in

d

dr

(
r
dGr

dr

)
+

(
k2r − m2

r

)
Gr = −δ(r − r′). (B.38)

This equation can be solved using the U − T method, where U(r) and T (r) solve the

following: [
d

dr

(
r
dGr

dr

)
+

(
k2r − m2

r

)]U(r)

T (r)

= 0. (B.39)

Note U(r) satisfies the boundary condition at r = a and T (r) satisfies the radiation

condition as r →∞. The above equation is Bessel’s equation, and Bessel’s equation

is solved by Bessel, Neumann, and Hankel functions.

U(r) will be used to construct the solution for when r < r′. In this region, either

standing waves or waves radiating outward (depending on θ) are expected. Therefore,

the form of the solution for U(r) is written as

U(r) = AJm(kr) + BH(2)
m (kr). (B.40)
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The boundary condition at r = a results in U ′(r = a) = 0. Therefore, the relationship

between the coefficients, A and B, can be found.

B = −A
J ′m(ka)

H
′(2)
m (ka)

(B.41)

Letting A = 1, the result is

U(r) = Jm(kr)− J ′m(ka)

H
′(2)
m (ka)

H(2)
m (kr). (B.42)

For T (r), the form of the solution is

T (r) = CH(1)
m (kr) + DH(2)

m (kr). (B.43)

T (r) will have to satisfy the radiation condition. This requires that C = 0. Thus

T (r) = H(2)
m (kr), (B.44)

where D = 1. The Green’s function will have the form

Gr =
U(r<)T (r>)

c
, (B.45)

where r< is the lesser of r and r′, r> is the greater of r and r′, and c is the conjunct

and is defined as

c = r[TU ′ − T ′U ]. (B.46)

The relevant equations are

U(r) = Jm(kr)− J ′m(ka)

H
′(2)
m (ka)

H
(2)
m (kr),

U ′(r) = J ′m(kr)− J ′m(ka)

H
′(2)
m (ka)

H
′(2)
m (kr),

T (r) = H
(2)
m (kr),

T ′(r) = H
′(2)
m (kr),

(B.47)
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Solving for the conjunct, the result is

c = r

[
J ′m(kr)H(2)

m (kr)− J ′m(ka)

H
′(2)
m (ka)

H ′(2)
m (kr)H(2)

m (kr)

−Jm(kr)H ′(2)
m (kr)

J ′m(ka)

H
′(2)
m (ka)

H(2)
m (kr)H ′(2)

m (kr)

]
, (B.48)

which simplifies to

c = r
[
J ′m(kr)H(2)

m (kr)− Jm(kr)H ′(2)
m (kr)

]
. (B.49)

Knowing that

H
(2)
m (kr) = Jm(kr)− jYm(kr),

H
′(2)
m (kr) = J ′m(kr)− jY ′

m(kr),
(B.50)

it is found that

c = r [J ′m(kr)Jm(kr)− jJ ′m(kr)Ym(kr)− J ′m(kr)Jm(kr) + jJm(kr)Y ′
m(kr)] , (B.51)

which reduces to

c = jr[Jm(kr)Y ′
m(kr)− J ′m(kr)Ym(kr)]. (B.52)

Using the identity

Jm(kr)Y ′
m(kr)− J ′m(kr)Ym(kr) =

2

πr
, (B.53)

it is found that

c = j
2

π
, (B.54)

which is a constant, as it should be.

Next, the Green’s function is written as

Gr = −j
π

2

[
Jm(kr<)− J ′m(ka)

H
′(2)
m (ka)

H(2)
m (kr<)

]
H(2)

m (kr>). (B.55)
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Subbing back into the standard form

G(r, θ; r′, θ′) =
∞∑

m=0

ũm(θ)ũ∗m(θ′)Gr(r, r
′; λm), (B.56)

the result is

G(r, θ; r′, θ′) = − j

4

∞∑

m=0

εm cosm(θ − θ′)

[
Jm(kr<)− J ′m(ka)

H
′(2)
m (ka)

H(2)
m (kr<)

]
H(2)

m (kr>).

(B.57)

To ensure this is the correct answer, a coordinate shift can be performed. First, let

a → 0 and then shift the coordinate system such that r′ = 0 i.e. move the origin of

the system to the location of the line source. The Green’s function should reduce to

the Green’s function for the radiation from a magnetic line source in free space.

First note that for a = 0, the term J ′m(ka)

H
′(2)
m (ka)

will vanish for all m. This is because

for all m, the denominator, H
′(2)
m (0) goes to -∞. Therefore, if a → 0, the Green’s

function becomes

G(r, θ; r′, θ′) = −j

4

∞∑
m=0

εm cos m(θ − θ′)Jm(kr<)H(2)
m (kr>). (B.58)

A coordinate transformation can performed such that the origin is shifted to r′.

r< = 0

r> = |r̄ − r̄′|
(B.59)

The Green’s function can be rewritten as

G(r, θ; r′, θ′) = −j

4

∞∑
m=0

εm cos m(θ − θ′)Jm(0)H(2)
m (k|r̄ − r̄′|). (B.60)

It is known that Jm(0) = 1 only when m = 0. For all other possible values for m,

Jm(0) = 0. Thus, the summation is no longer required, and the result is

G(r, θ; r′, θ′) = −j

4
H

(2)
0 (k|r̄ − r̄′|), (B.61)
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which is the correct answer. Thus, the methodology used is correct, and the Green’s

function for an infinite magnetic line source radiating in the presence of a PEC with

radius a surrounded by a layered material can be developed. For the geometry shown

in Figure B.1, all the media are homogeneous. Thus, the same governing wave equa-

tion applies with the only change being to the wave number. Specifically, the equation

that must be solved is

∇2
t Fz + k2Fz = −εMz (B.62)

where

k =





k1 = ±ω
√

µr1εr1µoεo a < r < r1

ki = ±ω
√

µriεriµoεo ri < r < ri+1

kn+1 = ko = ω
√

µoεo r > rn

(B.63)

where i = 2, 3, ...n. The same boundary conditions as before apply and are repeated

here for convenience
∂Fz

∂r

∣∣
r=a

= 0,

∂Fz

∂r

∣∣
r→∞ = −jkFz|r→∞ ,

Fz(r, θ) = Fz(r, θ + 2π).

(B.64)

Additionally, there are now multiple junction conditions at r = r1, r = r2, ...r = rn.

These are

Fz|r=r−m = Fz|r=r+
m

,

1
ε−

∂Fz

∂r

∣∣
r=r−m

= 1
ε+

∂Fz

∂r

∣∣
r=r+

m
,

(B.65)

where m = 1, 2, ...n and ε− and ε+ are the relative permittivities in the regions around

the boundary. The Green’s function solves

∇2
t G(r̄, r̄′) + k2G(r̄, r̄′) = −δ(r − r′)δ(θ − θ′)

r
. (B.66)

The solution can be found by

G(r, θ; r′, θ′) =
∞∑

m=0

ũm(θ)ũ∗m(θ′)Gr(r, r
′; λm). (B.67)
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From this point, the development proceeds exactly as it did for the unlayered PEC.

It has been shown that

∞∑
m=0

ũm(θ)ũ∗m(θ′) =
1

2π

∞∑
m=0

εm cos [m(θ − θ′)]. (B.68)

The Green’s function, Gr(r, r
′; λm), can be found using the U-T method where U(r)

and T (r) satisfy [
d

dr

(
r
dGr

dr

)
+

(
k2r − m2

r

)]U(r)

T (r)

= 0. (B.69)

There are now multiple regions necessitating the need to write the form for the solu-

tion of U(r) and T (r) in each region and then apply the junction conditions to solve

for the unknown constants. The form for U(r) in each region is

U(r) =





A1
mJm(k1r) + B1

mH(2)
m (k1r) a < r < r1,

Ai
mJm(kir) + Bi

mH(2)
m (kir) ri−1 < r < ri,

(B.70)

where i = 2, 3...n + 1, n is the number of layers material, and r = rn+1 is understood

such that rn+1 →∞. Note the first equation must satisfy the boundary condition at

r = a. B1
m has already been found in previous parts of this exam, and it is the same

here due to the same boundary condition at r = a.

B1
m = − J ′m(k1a)

H
′(2)
m (k1a)

(B.71)

A similar procedure is followed when solving for T (r). First, the forms of the solution

for T (r) in the various regions are

T (r) =





C1
mJm(kir) + D1

mH(2)
m (kir) a < r < r1,

Ci
mJm(kir) + Di

mH(2)
m (kir) ri−1 < r < ri.

(B.72)

Like before, the solution for the coefficients in a particular region are already known,

except in this case, the known coefficients are Cn+1
m and Dn+1

m due to the same bound-

135



ary condition as r →∞.

Cn+1
m = 0

Dn+1
m = 1

(B.73)

Note Gr will again have the form

Gr =
U(r<)T (r>)

c
, (B.74)

where c is the conjunct and is equal to

c =
j2An+1

m

π
. (B.75)

The magnetic line source will always be in the free space region. Additionally, this

formulation will only be used such that r ≤ r′. Substituting these results in the final

form for the Green’s function, G(r, θ; r′, θ′) for a PEC cylinder of radius a surrounded

by n layers of dielectrics with varying radii, ri in the presence of an infinite magnetic

line source. There are two forms. The first is for the region ri−1 < r < ri.

G(r, θ; r′, θ′) = − j

4

∞∑
m=0

εm

An+1
m

cos [m(θ − θ′)]
[
Ai

mJm(kir) + Bi
mH(2)

m (kir)
]
H(2)

m (kor
′) (B.76)

The second is for the region r > rn.

G(r, θ; r′, θ′) = − j

4

∞∑
m=0

εm

An+1
m

cos [m(θ − θ′)]
[
An+1

m Jm(kor<) + Bn+1
m H(2)

m (kor<)
]
H(2)

m (kor>),

(B.77)

where

An+1
m = 1, (B.78)

B1
m = −A1

m

J ′m(k1a)

H
′(2)
m (k1a)

, (B.79)
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and i = 2, 3...n. The Ai
m and Bi

m coefficients are found by applying the junction

conditions at the radial interfaces.

A1
m

[
Jm(k1r1)− J ′m(k1a)

H
′(2)
m (k1a)

H(2)
m (k1r1)

]
= A2

mJm(k2r1) + B2
mH(2)

m (k2r1) (B.80)

A1
m

[
J ′m(k1r1)− J ′m(k1a)

H
′(2)
m (k1a)

H ′(2)
m (k1r1)

]
= A2

mJ ′m(k2r1) + B2
mH ′(2)

m (k2r1) (B.81)

A2
mJm(k2r2) + B2

mH(2)
m (k2r2) = A3

mJm(k3r2) + B3
mH(2)

m (k3r2) (B.82)

A2
mJ ′m(k2r2) + B2

mH ′(2)
m (k2r2) = A3

mJ ′m(k3r2) + B3
mH ′(2)

m (k3r2) (B.83)

◦
◦
◦

An
mJm(knrn) + Bn

mH(2)
m (knrn) = Jm(korn) + Bn+1

m H(2)
m (korn) (B.84)

An
mJ ′m(knrn) + Bn

mH ′(2)
m (knrn) = J ′m(korn) + Bn+1

m H ′(2)
m (korn) (B.85)

These equations can be written in matrix notation of the form Ax = B, where

A is a 2n × 2n matrix, B are the forcing functions, and x is the solution vector. As

an example, consider a case where four layers of homogeneous material surround the

PEC cylinder. The matrix to solve for the unknown coefficients is




H
(2)
m (kor3) −Jm(k3r3) −H

(2)
m (k3r3) 0 0 0

H
′(2)
m (kor3) −J′m(k3r3) −H

′(2)
m (k3r3) 0 0 0

0 Jm(k3r2 H
(2)
m (k3r2) −Jm(k2r2) H

(2)
m (k2r2) 0

0 J′m(k3r2 H
′(2)
m (k3r2) −J′m(k2r2) H

′(2)
m (k2r2) 0

0 0 0 Jm(k2r1) H
(2)
m (k2r1) −Jm(k1r1 + KmH

(2)
m (k1r1)

0 0 0 J′m(k2r1) H
′(2)
m (k2r1) −J′m(k1r1 + KmH

′(2)
m (k1r1)







B4
m

A3
m

B3
m

A2
m

B2
m

A1
m




=




−Jm(kor3)

−J′m(kor3)

0

0

0

0




where Km = J ′m(k1a)

H
′(2)
m (k1a)

.

To ensure the accuracy of the derived Green’s function, the form in Equation

B.77 was used to determine σ2D for a layered cylinder. The results were compared

to those obtained using a Comsol simulation for a simplified cloak with material
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Figure B.2: Green’s function and FEM results comparison

parameters put forth by Yan et al. and shown in Equation B.86.

εr =

(
r − a

r

)2
b

b− a
, εθ =

b

b− a
, µz =

b

b− a
(B.86)

In order for the Green’s function to approximate a radially varying cloak as de-

scribed in Equation B.86, the number of layers used in the formulation must be large.

The Green’s function results were determined using 5,000 layers to approximate the

anisotropic material. The FEM results were obtained with MEL = 0.01λ. The calcu-

lated scattering widths from the two methods were very similar, as shown in Figure

B.2. The ∆ for these results is 0.004 m2, which is quite good. There is a noticeable

difference in the region where θ = 0o. This error can be further reduced by increasing

the number of layers. Based on these results, it was concluded the Green’s function

was correct.
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Appendix C. Vector Basis Functions

The Comsol Multiphysics software package uses the finite element method to solve

the vector wave equation and associated boundary conditions. The formulation used

relies heavily on that developed in Jianming Jin’s book, The Finite Element Method

in Electromagnetics, Second Edition [33]. For the simulations in this research ef-

fort, tetrahedral elements, as shown in Figure C.1, were used to discretize all three-

dimensional domains. Each tetrahedral element has four vertices with coordinates

(xe
i , y

e
i , z

e
i ) with i = 1, 2, 3, 4 (black numbers) specifying the node numbers. Within

Figure C.1: Local Tetrahedral Element

each tetrahedral element, the electric field is approximated such that

⇀

E
e ∼=

6∑
j=1

⇀

N
e

jE
e
j (C.1)

where
⇀

N
e

j are the vector basis functions for edge j (red numbers) and the Ee
j are the

unknown coefficients. Each tetrahedral element will have four nodes and six edges.

Vector basis functions (or edge functions) are used in electromagnetics because

node-based expansion functions are not able to accurately represent the boundary

conditions associated with various aspects of the vector fields [95]. The vector basis
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Table C.1: Edge Node Numbers
Edge i Node i1 Node i2

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

functions effectively enforce the requirement for continuity of tangential fields at in-

terfaces. A vector basis function is defined for each edge in every element. Hence,

each element has six vector basis functions. These vector basis functions, vectN e
i , can

be expressed as
⇀

N
e

i =
⇀

W i1i2l
e
i = [Li1∇Li2 − Li2∇Li1 ] l

e
i . (C.2)

Note i = 1, 2, ...6 and is the edge number while i1,2 = 1, 2, ...4 and refer to node

numbers. An edge connects node i1 to node i2. The values for i1 and i2 which

correspond to the edge number are shown in Table C.1. As an example, in Figure

C.1,
⇀

N1 is the vector basis function for edge 1 (red), which connects nodes 1 and 2

(black). Similarly,
⇀

N6 is the vector basis function for edge 6 (red) which connects

nodes 3 and 4. The lei term is the length of edge i.

The linear interpolation functions (Le
i , i = 1, 2, 3, 4) are found using a process

developed when using nodal-based expansion functions. First, the linear interpolation

functions can be written as

Le
i (x, y, z) =

1

6V e
(ae

i + be
ix + ce

iy + de
iz) . (C.3)

The yet-to-be-defined terms are the ae
i , b

e
i , c

e
i , d

e
i and V e terms. This is done below.

In nodal-based expansion functions, the unknown function within the tetrahe-

dral element, φe, is defined as

φe(x, y, z) = ae + bex + cey + dez. (C.4)
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Evaluating φe at each node yields

φe
1 = ae + bex1 + cey1 + dez1

φe
2 = ae + bex2 + cey2 + dez2

φe
3 = ae + bex3 + cey3 + dez3

φe
4 = ae + bex4 + cey4 + dez4

(C.5)

These can be written in matrix form as




1 xe
1 ye

1 ze
1

1 xe
2 ye

2 ze
2

1 xe
3 ye

3 ze
3

1 xe
4 ye

4 ze
4







ae

be

ce

de




=




φe
1

φe
2

φe
3

φe
4




. (C.6)

Cramer’s rule can be used to solve for ae, be, ce, and de.

ae =
1

6V e
det




φe
1 xe

1 ye
1 ze

1

φe
2 xe

2 ye
2 ze

2

φe
3 xe

3 ye
3 ze

3

φe
4 xe

4 ye
4 ze

4




, be =
1

6V e
det




1 φe
1 ye

1 ze
1

1 φe
2 ye

2 ze
2

1 φe
3 ye

3 ze
3

1 φe
4 ye

4 ze
4




, (C.7)

ce =
1

6V e
det




1 xe
1 φe

1 ze
1

1 xe
2 φe

2 ze
2

1 xe
3 φe

3 ze
3

1 xe
4 φe

4 ze
4




, de =
1

6V e
det




1 xe
1 ye

1 φe
1

1 xe
2 ye

2 φe
2

1 xe
3 ye

3 φe
3

1 xe
4 ye

4 φe
4




. (C.8)

Note V e is defined as

V e =
1

6
det




1 xe
1 ye

1 ze
1

1 xe
2 ye

2 ze
2

1 xe
3 ye

3 ze
3

1 xe
4 ye

4 ze
4




. (C.9)
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Table C.2: Example Tetrahedral Element Node Locations
Node i xe

i ye
i ze

i

1 2 2 2
2 1 1 1
3 3 1 1
4 2 3 1

|V e| is the volume of the element. The ae
j , be

j , ce
j , and de

j terms are found by evaluating

the determinants.

ae = 1
6V e (ae

1φ
e
1 + ae

2φ
e
2 + ae

3φ
e
3 + ae

4φ
e
4) ,

be = 1
6V e (be

1φ
e
1 + be

2φ
e
2 + be

3φ
e
3 + be

4φ
e
4) ,

ce = 1
6V e (ce

1φ
e
1 + ce

2φ
e
2 + ce

3φ
e
3 + ce

4φ
e
4) ,

de = 1
6V e (de

1φ
e
1 + de

2φ
e
2 + de

3φ
e
3 + de

4φ
e
4) .

(C.10)

Therefore, the ae
j , b

e
j , c

e
j , and de

j terms are

ae
1 =

∣∣∣∣∣∣∣∣∣

xe
2 ye

2 ze
2

xe
3 ye

3 ze
3

xe
4 ye

4 ze
4

∣∣∣∣∣∣∣∣∣
, ae

2 =

∣∣∣∣∣∣∣∣∣

xe
1 ye

1 ze
1

xe
3 ye

3 ze
3

xe
4 ye

4 ze
4

∣∣∣∣∣∣∣∣∣
, ae

3 =

∣∣∣∣∣∣∣∣∣

xe
1 ye

1 ze
1

xe
2 ye

2 ze
2

xe
4 ye

4 ze
4

∣∣∣∣∣∣∣∣∣
, ae

4 =

∣∣∣∣∣∣∣∣∣

xe
1 ye

1 ze
1

xe
2 ye

2 ze
2

xe
3 ye

3 ze
3

∣∣∣∣∣∣∣∣∣

be
1 =

∣∣∣∣∣∣∣∣∣

1 ye
2 ze

2

1 ye
3 ze

3

1 ye
4 ze

4

∣∣∣∣∣∣∣∣∣
, be

2 =

∣∣∣∣∣∣∣∣∣

1 ye
1 ze

1

1 ye
3 ze

3

1 ye
4 ze

4

∣∣∣∣∣∣∣∣∣
, be

3 =

∣∣∣∣∣∣∣∣∣

1 ye
1 ze

1

1 ye
2 ze

2

1 ye
4 ze

4

∣∣∣∣∣∣∣∣∣
, be

4 =

∣∣∣∣∣∣∣∣∣

1 ye
1 ze

1

1 ye
2 ze

2

1 ye
3 ze

3

∣∣∣∣∣∣∣∣∣

ce
1 =

∣∣∣∣∣∣∣∣∣

1 xe
2 ze

2

1 xe
3 ze

3

1 xe
4 ze

4

∣∣∣∣∣∣∣∣∣
, ce

2 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ze

1

1 xe
3 ze

3

1 xe
4 ze

4

∣∣∣∣∣∣∣∣∣
, ce

3 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ze

1

1 xe
2 ze

2

1 xe
4 ze

4

∣∣∣∣∣∣∣∣∣
, ce

4 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ze

1

1 xe
2 ze

2

1 xe
3 ze

3

∣∣∣∣∣∣∣∣∣

de
1 =

∣∣∣∣∣∣∣∣∣

1 xe
2 ye

2

1 xe
3 ye

3

1 xe
4 ye

4

∣∣∣∣∣∣∣∣∣
, de

2 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ye

1

1 xe
3 ye

3

1 xe
4 ye

4

∣∣∣∣∣∣∣∣∣
, de

3 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ye

1

1 xe
2 ye

2

1 xe
4 ye

4

∣∣∣∣∣∣∣∣∣
, de

4 =

∣∣∣∣∣∣∣∣∣

1 xe
1 ye

1

1 xe
2 ye

2

1 xe
3 ye

3

∣∣∣∣∣∣∣∣∣

In the above matrices, (xe
i , y

e
i , z

e
i ), i = 1, 2, 3, 4, are the coordinates of the nodes of

the tetrahedral elements.

As an example, consider a tetrahedral element with the vertices shown in Table

C.2. First, evaluate V e.
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V e =
1

6
det




1 2 2 2

1 1 1 1

1 3 1 1

1 2 3 1




= −2

3
(C.11)

Note the volume of the tetrahedral element as defined in Table C.2 can be found by

V =
1

3
Aoh =

1

3

(
1

2
(2)(2)

)
1 =

2

3
. (C.12)

Thus, |V e| does equal the volume of the element. Next, evaluate the ae
i , be

i , ce
i , and

de
i elements using the matrices defined above.

ae
1 = 4, ae

2 = −8, ae
3 = 0, ae

4 = 0,

be
1 = 0, be

2 = 2, be
3 = −2, be

4 = 0,

ce
1 = 0, ce

2 = 1, ce
3 = 1, ce

4 = −2,

de
1 = −4, de

2 = 1, de
3 = 1, de

4 = 2.

(C.13)

Using these values, the linear interpolation functions, Le
i , are

Le
1(x, y, z) = −1 + z,

Le
2(x, y, z) = −1

4
(2x + y + z − 8) ,

Le
3(x, y, z) = −1

4
(−2x + y + z) ,

Le
4(x, y, z) = −1

4
(−2y + 2z) ,

(C.14)

with the gradients being

∇Le
1 = ẑ,

∇Le
2 = −1

4
(2x̂ + ŷ + ẑ) ,

∇Le
3 = −1

4
(−2x̂ + ŷ + ẑ) ,

∇Le
4 = −1

4
(−2ŷ + 2ẑ) .

(C.15)
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The lengths of each side in the tetrahedral element are

le1 =
√

3, le2 =
√

3, le3 =
√

2,

le4 = 2, le5 =
√

5, le6 =
√

5.
(C.16)

It is now possible to determine the N e
j functions.

⇀

W 12 = −1
4
[(2z − 2) x̂ + (z − 1) ŷ + (7− 2x− y) ẑ] ,

⇀

W 13 = −1
4
[(2− 2z) x̂ + (z − 1) ŷ + (2x− y − 1) ẑ] ,

⇀

W 14 = −1
4
[(2− 2z) ŷ + (2y − 2) ẑ] ,

⇀

W 23 = −1
4
[(y + z + 4) x̂ + (−x + 2) ŷ + (−x + 2) ẑ] ,

⇀

W 42 = −1
4
[(y − z) x̂ + (−x− z + 4) ŷ + (x + y − 16) ẑ] ,

⇀

W 34 = −1
4
[(y − z) x̂ + (−x + z) ŷ + (x− y) ẑ] .

(C.17)

Note that for all
⇀

W i1i2 , the following hold:

∇ · ⇀

W i1i2 = 0,

∇× ⇀

W i1i2 = 2∇Le
l1
×∇Le

l2
,

⇀
e i · ∇Le

i1
= − 1

lei
,

⇀
e i · ∇Le

i1
= 1

lei
,

(C.18)

where
⇀
ej is a unit vector for edge i pointing from node i1 to node i2. By satisfying

these constraints, all
⇀

W i1i2 vectors have a constant tangential component along the

ith edge while having no tangential component along the five other edges. Thus, the

vector-based edge elements are well-suited for electromagnetics problems. The final
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vector-based edge elements are

⇀

N
e

1 =
⇀

W 12l
e
1 = −

√
3

4
[(2z − 2) x̂ + (z − 1) ŷ + (7− 2x− y) ẑ] ,

⇀

N
e

2 =
⇀

W 13l
e
2 = −

√
3

4
[(2− 2z) x̂ + (z − 1) ŷ + (2x− y − 1) ẑ] ,

⇀

N
e

3 =
⇀

W 14l
e
3 = −

√
2

4
[(2− 2z) ŷ + (2y − 2) ẑ] ,

⇀

N
e

4 =
⇀

W 23l
e
4 = −2

4
[(y + z + 4) x̂ + (−x + 2) ŷ + (−x + 2) ẑ] ,

⇀

N
e

5 =
⇀

W 42l
e
5 = −

√
5

4
[(y − z) x̂ + (−x− z + 4) ŷ + (x + y − 16) ẑ] ,

⇀

N
e

6 =
⇀

W 34l
e
6 = −

√
5

4
[(y − z) x̂ + (−x + z) ŷ + (x− y) ẑ] .

(C.19)

Thus, given any tetrahedral element within a domain, the above method is used to

determine the linear, vector-based edge elements which will approximate the solution

within each element. This is done for each element within the domain. The unknowns

are manipulated into a system of equations which are solved using standard techniques

such as conjugate gradient.
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8. Alú, Andrea and Nader Engheta. “Achieving transparency with plasmonic and
metamaterial coatings,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 72(1), 2005.
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